Estimation of total glomerular number using an integrated disector method in embryonic and postnatal kidneys.
Ontology highlight
ABSTRACT: Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) are a polymorphic group of clinical disorders comprising the major cause of renal failure in children. Included within CAKUT is a wide spectrum of developmental malformations ranging from renal agenesis, renal hypoplasia and renal dysplasia (maldifferentiation of renal tissue), each characterized by varying deficits in nephron number. First presented in the Brenner Hypothesis, low congenital nephron endowment is becoming recognized as an antecedent cause of adult-onset hypertension, a leading cause of coronary heart disease, stroke, and renal failure in North America. Genetic mouse models of impaired nephrogenesis and nephron endowment provide a critical framework for understanding the origins of human kidney disease. Current methods to quantitate nephron number include (i) acid maceration (ii) estimation of nephron number from a small number of tissue sections (iii) imaging modalities such as MRI and (iv) the gold standard physical disector/fractionator method. Despite its accuracy, the physical disector/fractionator method is rarely employed because it is labour-intensive, time-consuming and costly to perform. Consequently, less rigourous methods of nephron estimation are routinely employed by many laboratories. Here we present an updated, digitized version of the physical disector/fractionator method using free open source Fiji software, which we have termed the integrated disector method. This updated version of the gold standard modality accurately, rapidly and cost-effectively quantitates nephron number in embryonic and post-natal mouse kidneys, and can be easily adapted for stereological measurements in other organ systems.
SUBMITTER: Arsenault MG
PROVIDER: S-EPMC4349599 | biostudies-literature | 2014
REPOSITORIES: biostudies-literature
ACCESS DATA