Project description:Most human coronaviruses cause mild upper respiratory tract disease but may be associated with more severe pulmonary disease in immunocompromised individuals. However, SARS coronavirus caused severe lower respiratory disease with nearly 10% mortality and evidence of systemic spread. Recently, another coronavirus (human coronavirus-Erasmus Medical Center (hCoV-EMC)) was identified in patients with severe and sometimes lethal lower respiratory tract infection. Viral genome analysis revealed close relatedness to coronaviruses found in bats. Here we identify dipeptidyl peptidase 4 (DPP4; also known as CD26) as a functional receptor for hCoV-EMC. DPP4 specifically co-purified with the receptor-binding S1 domain of the hCoV-EMC spike protein from lysates of susceptible Huh-7 cells. Antibodies directed against DPP4 inhibited hCoV-EMC infection of primary human bronchial epithelial cells and Huh-7 cells. Expression of human and bat (Pipistrellus pipistrellus) DPP4 in non-susceptible COS-7 cells enabled infection by hCoV-EMC. The use of the evolutionarily conserved DPP4 protein from different species as a functional receptor provides clues about the host range potential of hCoV-EMC. In addition, it will contribute critically to our understanding of the pathogenesis and epidemiology of this emerging human coronavirus, and may facilitate the development of intervention strategies.
Project description:Opioid peptides are involved in various essential physiological processes, most notably nociception. Dipeptidyl peptidase III (DPP III) is one of the most important enkephalin-degrading enzymes associated with the mammalian pain modulatory system. Here we describe the X-ray structures of human DPP III and its complex with the opioid peptide tynorphin, which rationalize the enzyme's substrate specificity and reveal an exceptionally large domain motion upon ligand binding. Microcalorimetric analyses point at an entropy-dominated process, with the release of water molecules from the binding cleft ("entropy reservoir") as the major thermodynamic driving force. Our results provide the basis for the design of specific inhibitors that enable the elucidation of the exact role of DPP III and the exploration of its potential as a target of pain intervention strategies.
Project description:Effect of expression of dipeptidyl peptidase-IV (DPP-IV) in U373 cell line on uncontrolled cell proliferation and aberrant interactions with the brain extracellular matrix.
Project description:Microarray analysis of peripheral blood mononuclear cells (PBMCs), lungs, and lung lesions collected over the course of hCoV-EMC infection of 6 rhesus macaques.
Project description:Microarray analysis of peripheral blood mononuclear cells (PBMCs), lungs, and lung lesions collected over the course of hCoV-EMC infection of 6 rhesus macaques. 6 rhesus macaques were infected intratracheally with hCoV-EMC. PBMCs were collected at days 0, 1, 3, and 6, and lungs were collected from serial sacrifices of 3 animals each at day 3 and day 6. Infection produced a mild-moderate, self-limiting respiratory infection, and was not lethal. We performed microarray analysis (using Agilent Rhesus arrays) on all lungs, lung lesions, and PBMCs collected for the study.
Project description:Fouchier et al. reported the isolation and genome sequencing of a novel coronavirus tentatively named "human betacoronavirus 2c EMC/2012 (HCoV-EMC)" from a Saudi patient presenting with pneumonia and renal failure in June 2012. Genome sequencing showed that this virus belongs to the group C species of the genus betacoronavirus and phylogenetically related to the bat coronaviruses HKU4 and HKU5 previously found in lesser bamboo bat and Japanese Pipistrelle bat of Hong Kong respectively. Another patient from Qatar with similar clinical presentation and positive RT-PCR test was reported in September 2012. We compare and contrast the clinical presentation, laboratory diagnosis and management of infection due to this novel coronavirus and that of SARS coronavirus despite the paucity of published information on the former. Since 70% of all emerging infectious pathogens came from animals, the emergence of this novel virus may represent another instance of interspecies jumping of betacoronavirus from animals to human similar to the group A coronavirus OC43 possibly from a bovine source in the 1890s and the group B SARS coronavirus in 2003 from bat to civet and human. Despite the apparently low transmissibility of the virus at this stage, research preparedness against another SARS-like pandemic is an important precautionary strategy.
Project description:The oral commensal bacterium Streptococcus gordonii interacts with salivary amylase via two amylase-binding proteins, AbpA and AbpB. Based on sequence analysis, the 20-kDa AbpA protein is unique to S. gordonii, whereas the 82-kDa AbpB protein appears to share sequence homology with other bacterial dipeptidases. The aim of this study was to verify the peptidase activity of AbpB and further explore its potential functions. The abpB gene was cloned, and histidine-tagged AbpB (His-AbpB) was expressed in Escherichia coli and purified. Its amylase-binding activity was verified in an amylase ligand binding assay, and its cross-reactivity was verified with an anti-AbpB antibody. Both recombinant His-AbpB and partially purified native AbpB displayed dipeptidase activity and degraded human type VI collagen and fibrinogen, but not salivary amylase. Salivary amylase precipitates not only AbpA and AbpB but also glucosyltransferase G (Gtf-G) from S. gordonii supernatants. Since Streptococcus mutans also releases Gtf enzymes that could also be involved in multispecies plaque interactions, the effect of S. gordonii AbpB on S. mutans Gtf-B activity was also tested. Salivary amylase and/or His-AbpB caused a 1.4- to 2-fold increase of S. mutans Gtf-B sucrase activity and a 3- to 6-fold increase in transferase activity. An enzyme-linked immunosorbent assay verified the interaction of His-AbpB and amylase with Gtf-B. In summary, AbpB demonstrates proteolytic activity and interacts with and modulates Gtf activity. These activities may help explain the crucial role AbpB appears to play in S. gordonii oral colonization.
Project description:Dipeptidyl peptidase III (DPP III, EC 3.4.14.4) is a monozinc metalloexopeptidase that hydrolyzes dipeptides from the N-terminus of peptides consisting of three or more amino acids. Recently, DPP III has attracted great interest from scientists, and numerous studies have been conducted showing that it is involved in the regulation of various physiological processes. Since it is the only metalloenzyme among the dipeptidyl peptidases, we considered it important to study the process of binding and exchange of physiologically relevant metal dications in DPP III. Using fluorimetry, we measured the Kd values for the binding of Zn2+, Cu2+, and Co2+ to the catalytic site, and using isothermal titration calorimetry (ITC), we measured the Kd values for the binding of these metals to an additional binding site. The structure of the catalytic metal's binding site is known from previous studies, and in this work, the affinities for this site were calculated for Zn2+, Cu2+, Co2+, and Mn2+ using the QM approach. The structures of the additional binding sites for the Zn2+ and Cu2+ were also identified, and MD simulations showed that two Cu2+ ions bound to the catalytic and inhibitory sites exchanged less frequently than the Zn2+ ions bound to these sites.
Project description:Dipeptidyl peptidase-4 inhibitors (DPP4i) are antidiabetic medications that prevent cleavage of incretin hormones by dipeptidyl peptidase-4 (DPP4). DPP4 is ubiquitously expressed, and its hepatic DPP4 expression is upregulated under non-alcoholic steatohepatitis (NASH) conditions. We investigated the effect of DPP4i treatment on NASH pathogenesis, as well as its potential underlying molecular mechanisms. Mice were randomly divided into three groups: Group 1, chow-fed mice treated with vehicle for 20 weeks; Group 2, high-fat, high-fructose, and high-cholesterol Amylin liver NASH (AMLN) diet-fed mice treated with vehicle for 20 weeks; Group 3, AMLN diet-fed mice treated with vehicle for the first 10 weeks, followed by the DPP4i teneligliptin (20 mg/kg/day) for additional 10 weeks. DPP4i administration reduced serum liver enzyme and hepatic triglyceride levels and markedly improved hepatic steatosis and fibrosis in the AMLN diet-induced NASH model. In vivo, NASH alleviation significantly correlated with the suppression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis and downregulated hepatic DPP4 expression. In vitro, DPP4i treatment significantly decreased the markers of TRAIL receptor-mediated lipoapoptosis and suppressed DPP4 expression in palmitate-treated hepatocytes. In conclusion, DPP4i may efficiently attenuate the pathogenesis of AMLN diet-induced NASH in mice by suppressing lipotoxicity-induced apoptosis, possibly by modulating hepatic DPP4 expression.