Unknown

Dataset Information

0

Structure-reactivity relationships of zwitterionic 1,3-diaza-Claisen rearrangements.


ABSTRACT: Bridged bicyclic tertiary allylic amines aza-norbornene 1 and isoquinuclidene 2 add to isocyanates, isothiocyanates, and in situ-generated carbodiimides to form zwitterionic intermediates that undergo 1,3-diaza-Claisen rearrangements to afford highly substituted ureas, thioureas, and guanidines, respectively. Aza-norbornene 1 is significantly more reactive toward 1,3-diaza-Claisen rearrangements than isoquinuclidene 2. This reactivity difference is most likely due to the inherent ring strain in the aza-bicyclo[2.2.1]heptene ring system of aza-norbornene 1. The most apparent reactivity trend of the heterocumulenes is that the most electron-deficient heterocumulenes are more reactive toward 1,3-diaza-Claisen rearrangements. The introduction of a new stereocenter ?- to the nucleophilic nitrogen in aza-norbornene 1 and isoquinuclidine 2 decreases the reactivity toward 1,3-diaza-Claisen rearrangements, while the exodiastereomers 3b and 4b are less reactive than the corresponding endodiastereomers 3a and 4a. Isocyanates that bear an electron-withdrawing group react with allylic amines 1-3b to afford mixtures of ureas and isoureas; however, with excess isocyanate and heat, thermodynamic equilibration is possible affording ureas. Inspired by this observation, a one-pot reaction of isocyanates with amines 1, 2, and 3b followed by BF3·OEt2-catalyzed isomerization of the urea/isourea mixture was developed that affords the corresponding ureas in excellent yields.

SUBMITTER: Aranha Potter R 

PROVIDER: S-EPMC4356197 | biostudies-literature | 2013 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structure-reactivity relationships of zwitterionic 1,3-diaza-Claisen rearrangements.

Aranha Potter Rachel R   Bowser Amy M AM   Yang Yanbo Y   Madalengoitia José S JS   Ziller Joseph W JW  

The Journal of organic chemistry 20131108 23


Bridged bicyclic tertiary allylic amines aza-norbornene 1 and isoquinuclidene 2 add to isocyanates, isothiocyanates, and in situ-generated carbodiimides to form zwitterionic intermediates that undergo 1,3-diaza-Claisen rearrangements to afford highly substituted ureas, thioureas, and guanidines, respectively. Aza-norbornene 1 is significantly more reactive toward 1,3-diaza-Claisen rearrangements than isoquinuclidene 2. This reactivity difference is most likely due to the inherent ring strain in  ...[more]

Similar Datasets

| S-EPMC8021225 | biostudies-literature
| S-EPMC4482617 | biostudies-literature
| S-EPMC2547484 | biostudies-literature
| S-EPMC3873100 | biostudies-literature
| S-EPMC6644144 | biostudies-literature
| S-EPMC9812368 | biostudies-literature
| S-EPMC3537898 | biostudies-literature
| S-EPMC10788916 | biostudies-literature
| S-EPMC3007329 | biostudies-literature
| S-EPMC4715472 | biostudies-literature