Unknown

Dataset Information

0

Involvement of general control nonderepressible kinase 2 in cancer cell apoptosis by posttranslational mechanisms.


ABSTRACT: General control nonderepressible kinase 2 (GCN2) is a promising target for cancer therapy. However, the role of GCN2 in cancer cell survival or death is elusive; further, small molecules targeting GCN2 signaling are not available. By using a GCN2 level-based drug screening assay, we found that GCN2 protein level critically determined the sensitivity of the cancer cells toward Na(+),K(+)-ATPase ligand-induced apoptosis both in vitro and in vivo, and this effect was largely dependent on C/EBP homologous protein (CHOP) induction. Further analysis revealed that GCN2 is a short-lived protein. In A549 lung carcinoma cells, cellular ?-arrestin1/2 associated with GCN2 and maintained the GCN2 protein level at a low level by recruiting the E3 ligase NEDD4L and facilitating consequent proteasomal degradation. However, Na(+),K(+)-ATPase ligand treatment triggered the phosphorylation of GCN2 at threonine 899, which increased the GCN2 protein level by disrupting the formation of GCN2-?-arrestin-NEDD4L ternary complex. The enhanced GCN2 level, in turn, aggravated Na(+),K(+)-ATPase ligand-induced cancer cell apoptosis. Our findings reveal that GCN2 can exert its proapoptotic function in cancer cell death by posttranslational mechanisms. Moreover, Na(+),K(+)-ATPase ligands emerge as the first identified small-molecule drugs that can trigger cancer cell death by modulating GCN2 signaling.

SUBMITTER: Wei C 

PROVIDER: S-EPMC4357505 | biostudies-literature | 2015 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Involvement of general control nonderepressible kinase 2 in cancer cell apoptosis by posttranslational mechanisms.

Wei Chen C   Lin Ma M   Jinjun Bian B   Su Feng F   Dan Cao C   Yan Chen C   Jie Yang Y   Jin Zhang Z   Zi-Chun Hua H   Wu Yin Y  

Molecular biology of the cell 20150114 6


General control nonderepressible kinase 2 (GCN2) is a promising target for cancer therapy. However, the role of GCN2 in cancer cell survival or death is elusive; further, small molecules targeting GCN2 signaling are not available. By using a GCN2 level-based drug screening assay, we found that GCN2 protein level critically determined the sensitivity of the cancer cells toward Na(+),K(+)-ATPase ligand-induced apoptosis both in vitro and in vivo, and this effect was largely dependent on C/EBP homo  ...[more]

Similar Datasets

| S-EPMC4225475 | biostudies-literature
| S-EPMC6197744 | biostudies-literature
| S-EPMC5225295 | biostudies-literature
| S-EPMC5079623 | biostudies-literature
| S-EPMC3175429 | biostudies-literature
| S-EPMC3721730 | biostudies-literature
| S-EPMC3297728 | biostudies-literature
| S-EPMC2730383 | biostudies-literature
| S-EPMC8947524 | biostudies-literature
| S-EPMC3622868 | biostudies-literature