Unknown

Dataset Information

0

Partitioning detectability components in populations subject to within-season temporary emigration using binomial mixture models.


ABSTRACT: Detectability of individual animals is highly variable and nearly always < 1; imperfect detection must be accounted for to reliably estimate population sizes and trends. Hierarchical models can simultaneously estimate abundance and effective detection probability, but there are several different mechanisms that cause variation in detectability. Neglecting temporary emigration can lead to biased population estimates because availability and conditional detection probability are confounded. In this study, we extend previous hierarchical binomial mixture models to account for multiple sources of variation in detectability. The state process of the hierarchical model describes ecological mechanisms that generate spatial and temporal patterns in abundance, while the observation model accounts for the imperfect nature of counting individuals due to temporary emigration and false absences. We illustrate our model's potential advantages, including the allowance of temporary emigration between sampling periods, with a case study of southern red-backed salamanders Plethodon serratus. We fit our model and a standard binomial mixture model to counts of terrestrial salamanders surveyed at 40 sites during 3-5 surveys each spring and fall 2010-2012. Our models generated similar parameter estimates to standard binomial mixture models. Aspect was the best predictor of salamander abundance in our case study; abundance increased as aspect became more northeasterly. Increased time-since-rainfall strongly decreased salamander surface activity (i.e. availability for sampling), while higher amounts of woody cover objects and rocks increased conditional detection probability (i.e. probability of capture, given an animal is exposed to sampling). By explicitly accounting for both components of detectability, we increased congruence between our statistical modeling and our ecological understanding of the system. We stress the importance of choosing survey locations and protocols that maximize species availability and conditional detection probability to increase population parameter estimate reliability.

SUBMITTER: O'Donnell KM 

PROVIDER: S-EPMC4361623 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Partitioning detectability components in populations subject to within-season temporary emigration using binomial mixture models.

O'Donnell Katherine M KM   Thompson Frank R FR   Semlitsch Raymond D RD  

PloS one 20150316 3


Detectability of individual animals is highly variable and nearly always < 1; imperfect detection must be accounted for to reliably estimate population sizes and trends. Hierarchical models can simultaneously estimate abundance and effective detection probability, but there are several different mechanisms that cause variation in detectability. Neglecting temporary emigration can lead to biased population estimates because availability and conditional detection probability are confounded. In thi  ...[more]

Similar Datasets

| S-EPMC3354651 | biostudies-literature
| S-EPMC8074841 | biostudies-literature
| S-EPMC6292049 | biostudies-literature
| S-EPMC3245270 | biostudies-literature
| S-EPMC9766880 | biostudies-literature
| S-EPMC2953822 | biostudies-literature
| S-EPMC4814320 | biostudies-literature
| S-EPMC10614817 | biostudies-literature
| S-EPMC7843985 | biostudies-literature
| S-EPMC7027829 | biostudies-literature