Ontology highlight
ABSTRACT: Purpose
MR myocardial perfusion imaging is dependent on reliable electrocardiogram (ECG) triggering for accurate measurement of myocardial blood flow (MBF). A non-ECG-triggered method for quantitative first-pass imaging may improve clinical feasibility in patients with poor ECG signal. The purpose of this study is to evaluate the feasibility of a non-ECG-triggered method for myocardial perfusion imaging in a single slice.Methods
The proposed non-ECG-triggered technique uses a saturation-recovery magnetization preparation and golden-angle radial acquisition for integrated arterial input function (AIF) measurement. Image based self-gating with a temporal resolution of 42.6 ms is used to generate a first-pass image series with consistent cardiac phase. The AIF is measured using beat-by-beat T1 estimation of the ventricular blood pool. The proposed technique was performed on 14 healthy volunteers and compared against a conventional ECG-triggered dual-bolus acquisition.Results
The proposed method produced MBF with no significant difference compared with ECG-triggered technique (mean of 0.63 ± 0.22 mL/min/g to 0.73 ± 0.21 mL/min/g).Conclusion
We have developed a non-ECG-triggered perfusion imaging method with T1 based measurement of the AIF in a single slice. In this preliminary study, our results demonstrate that MBF measured using the proposed method is comparable to the conventional ECG-triggered method.
SUBMITTER: Chen D
PROVIDER: S-EPMC4362861 | biostudies-literature | 2015 Sep
REPOSITORIES: biostudies-literature

Chen David D Sharif Behzad B Dharmakumar Rohan R Thomson Louise E J LE Bairey Merz C Noel CN Berman Daniel S DS Li Debiao D
Magnetic resonance in medicine 20140916 3
<h4>Purpose</h4>MR myocardial perfusion imaging is dependent on reliable electrocardiogram (ECG) triggering for accurate measurement of myocardial blood flow (MBF). A non-ECG-triggered method for quantitative first-pass imaging may improve clinical feasibility in patients with poor ECG signal. The purpose of this study is to evaluate the feasibility of a non-ECG-triggered method for myocardial perfusion imaging in a single slice.<h4>Methods</h4>The proposed non-ECG-triggered technique uses a sat ...[more]