Project description:We and others have previously shown that Kras G12D is a much more potent oncogene than oncogenic Nras in hematological malignancies. We attributed the strong leukemogenic activity of KrasG12D at least partially to its unique capability to hyperactivate wild-type (WT) Nras and Hras. Here, we report that Sos1, a guanine nucleotide exchange factor, is required to mediate this process. Sos1 is overexpressed in Kras G12D/+ cells, but not in Nras Q61R/+ and Nras G12D/+ cells. KrasG12D proteins form a complex with Sos1 in vivo. Sos1 deficiency attenuates hyperactivation of WT Nras, Hras, and the downstream ERK signaling in Kras G12D/+ cells. Thus, Sos1 deletion ameliorates oncogenic Kras-induced myeloproliferative neoplasm (MPN) phenotypes and prolongs the survival of Kras G12D/+ mice. In contrast, Sos1 is dispensable for hyperactivated granulocyte-macrophage colony-stimulating factor signaling in Nras Q61R/+ cells, and Sos1 -/- does not affect MPN phenotypes in Nras Q61R/+ mice. Moreover, the survival of Kras G12D/+ ; Sos1 -/- recipients is comparable to that of Kras G12D/+ recipients treated with combined MEK and JAK inhibitors. Our study suggests that targeting Sos1-oncogenic Kras interaction may improve the survival of cancer patients with KRAS mutations.
Project description:Oncogenic NRAS and KRAS mutations are prevalent in human juvenile and chronic myelomonocytic leukemia (JMML/CMML). However, additional genetic mutations cooperating with oncogenic RAS in JMML/ CMML progression and/or their transformation to acute myeloid leukemia (AML) remain largely unknown. Here we tested the potential genetic interaction of DNMT3A mutations and oncogenic RAS mutations in leukemogenesis. We found that Dnmt3a(-/-) induces multiple hematopoietic phenotypes after a prolonged latency, including T-cell expansion in the peripheral blood, stress erythropoiesis in the spleen and myeloid malignancies in the liver. Dnmt3a(-/-) significantly promoted JMML/CMML progression and shortened the survival of Kras(G12D/+) mice in a cell-autonomous manner. Similarly, downregulating Dnmt3a also promoted myeloid malignancies in Nras(G12D/+) mice. Further studies show that Dnmt3a deficiency rescues Kras(G12D/+)-mediated depletion of hematopoietic stem cells and increases self-renewal of Kras(G12D/+) myeloid progenitors (MPs). Moreover, ~33% of animals developed an AML-like disease, which is driven by Kras(G12D/+); Dnmt3a(-/-) MPs. Consistent with our result, COSMIC database mining demonstrates that the combination of oncogenic RAS and DNMT3A mutations exclusively occurred in patients with JMML, CMML or AML. Our results suggest that DNMT3A mutations and oncogenic RAS cooperate to regulate hematopoietic stem and progenitor cells and promote myeloid malignancies.
Project description:Oncogenic NRAS mutations are frequently identified in human myeloid leukemias. In mice, expression of endogenous oncogenic Nras (Nras(G12D/+)) in hematopoietic cells leads to expansion of myeloid progenitors, increased long-term reconstitution of bone marrow cells, and a chronic myeloproliferative neoplasm (MPN). However, acute expression of Nras(G12D/+) in a pure C57BL/6 background does not induce hyperactivated granulocyte macrophage colony-stimulating factor signaling or increased proliferation in myeloid progenitors. It is thus unclear how Nras(G12D/+) signaling promotes leukemogenesis. Here, we show that hematopoietic stem cells (HSCs) expressing Nras(G12D/+) serve as MPN-initiating cells. They undergo moderate hyperproliferation with increased self-renewal. The aberrant Nras(G12D/+) HSC function is associated with hyperactivation of ERK1/2 in HSCs. Conversely, downregulation of MEK/ERK by pharmacologic and genetic approaches attenuates the cycling of Nras(G12D/+) HSCs and prevents the expansion of Nras(G12D/+) HSCs and myeloid progenitors. Our data delineate critical mechanisms of oncogenic Nras signaling in HSC function and leukemogenesis.
Project description:Wild-type Kras, a small GTPase, inactivates Ras growth-promoting signaling. However, the role of Kras in differentiation of myeloid cells remains unclear. This study showed the involvement of Kras in a novel regulatory mechanism underlying the dimethyl sulfoxide (DMSO)-induced differentiation of human acute myeloid leukemia HL-60 cells. Kras was found to positively regulate DMSO-induced differentiation, with the activity of Kras increasing upon DMSO. Inhibition of Kras attenuated CD11b expression in differentiated HL-60 cells. GSK3β, an important component of Wnt signaling, was found to be a downstream signal of Kras. Phosphorylation of GSK3β was markedly enhanced by DMSO treatment. Moreover, inhibition of GSK3β enhanced CD11b expression and triggered the accumulation in the nucleus of β-catenin and Tcf in response to DMSO. Inhibitors of β-catenin-mediated pathways blocked CD11b expression, further indicating that β-catenin is involved in the differentiation of HL-60 cells. Elevated expression of C/EBPα and C/EBPɛ accompanied by the expression of granulocyte colony-stimulating factor (G-CSF) receptor was observed during differentiation. Taken together, these findings suggest that Kras engages in cross talk with the Wnt/β-catenin pathway upon DMSO treatment of HL-60 cells, thereby regulating the granulocytic differentiation of HL-60 cells. These results indicate that Kras acts as a tumor suppressor during the differentiation of myeloid cells.
Project description:We have previously identified several members of the Wnt/beta-catenin pathway that are differentially expressed in a mouse model with deficient coronary vessel formation. Systemic ablation of beta-catenin expression affects mouse development at gastrulation with failure of both mesoderm development and axis formation. To circumvent this early embryonic lethality and study the specific role of beta-catenin in coronary arteriogenesis, we have generated conditional beta-catenin-deletion mutant animals in the proepicardium by interbreeding with a Cre-expressing mouse that targets coronary progenitor cells in the proepicardium and its derivatives. Ablation of beta-catenin in the proepicardium results in lethality between embryonic day 15 and birth. Mutant mice display impaired coronary artery formation, whereas the venous system and microvasculature are normal. Analysis of proepicardial beta-catenin mutant cells in the context of an epicardial tracer mouse reveals that the formation of the proepicardium, the migration of proepicardial cells to the heart, and the formation of the primitive epicardium are unaffected. However, subsequent processes of epicardial development are dramatically impaired in epicardial-beta-catenin mutant mice, including failed expansion of the subepicardial space, blunted invasion of the myocardium, and impaired differentiation of epicardium-derived mesenchymal cells into coronary smooth muscle cells. Our data demonstrate a functional role of the epicardial beta-catenin pathway in coronary arteriogenesis.
Project description:Many cancers originate from stem or progenitor cells hijacked by somatic mutations that drive replication, exemplified by adenomatous transformation of pulmonary alveolar epithelial type II (AT2) cells1. Here we demonstrate a different scenario: expression of KRAS(G12D) in differentiated AT1 cells reprograms them slowly and asynchronously back into AT2 stem cells that go on to generate indolent tumours. Like human lepidic adenocarcinoma, the tumour cells slowly spread along alveolar walls in a non-destructive manner and have low ERK activity. We find that AT1 and AT2 cells act as distinct cells of origin and manifest divergent responses to concomitant WNT activation and KRAS(G12D) induction, which accelerates AT2-derived but inhibits AT1-derived adenoma proliferation. Augmentation of ERK activity in KRAS(G12D)-induced AT1 cells increases transformation efficiency, proliferation and progression from lepidic to mixed tumour histology. Overall, we have identified a new cell of origin for lung adenocarcinoma, the AT1 cell, which recapitulates features of human lepidic cancer. In so doing, we also uncover a capacity for oncogenic KRAS to reprogram a differentiated and quiescent cell back into its parent stem cell en route to adenomatous transformation. Our work further reveals that irrespective of a given cancer's current molecular profile and driver oncogene, the cell of origin exerts a pervasive and perduring influence on its subsequent behaviour.
Project description:During the initiation stage of pancreatic adenocarcinoma induced by oncogenic Kras, pancreatic cells are exposed to both a protumoral effect and an opposing tumor suppressive process known as oncogene-induced senescence. Pancreatitis disrupts this balance in favor of the transforming effect of oncogenes by lowering the tumor suppressive threshold of oncogene-induced senescence through expression of the stress protein Nupr1.
Project description:Colorectal cancer (CRC), which shows a high degree of heterogeneity, is the third most deadly cancer worldwide. Mutational activation of KRASG12D occurs in approximately 10-12% of CRC cases, but the susceptibility of KRASG12D-mutated CRC to the recently discovered KRASG12D inhibitor MRTX1133 has not been fully defined. Here, we report that MRTX1133 treatment caused reversible growth arrest in KRASG12D-mutated CRC cells, accompanied by partial reactivation of RAS effector signaling. Through a drug-anchored synthetic lethality screen, we discovered that epidermal growth factor receptor (EGFR) inhibition was synthetic lethal with MRTX1133. Mechanistically, MRTX1133 treatment downregulated the expression of ERBB receptor feedback inhibitor 1 (ERRFI1), a crucial negative regulator of EGFR, thereby causing EGFR feedback activation. Notably, wild-type isoforms of RAS, including H-RAS and N-RAS, but not oncogenic K-RAS, mediated signaling downstream of activated EGFR, leading to RAS effector signaling rebound and reduced MRTX1133 efficacy. Blockade of activated EGFR with clinically used antibodies or kinase inhibitors suppressed the EGFR/wild-type RAS signaling axis, sensitized MRTX1133 monotherapy, and caused the regression of KRASG12D-mutant CRC organoids and cell line-derived xenografts. Overall, this study uncovers feedback activation of EGFR as a prominent molecular event that restricts KRASG12D inhibitor efficacy and establishes a potential combination therapy consisting of KRASG12D and EGFR inhibitors for patients with KRASG12D-mutated CRC.
Project description:KRAS-activating mutations drive human non-small cell lung cancer and initiate lung tumorigenesis in genetically engineered mouse (GEM) models. However, in a GEM model of KRAS(G12D)-induced lung cancer, tumors arise stochastically following a latency period, suggesting that additional events are required to promote early-stage tumorigenic expansion of KRAS(G12D)-mutated cells. PI3Kα (PIK3CA) is a direct effector of KRAS, but additional activation of PI3'-lipid signaling may be required to potentiate KRAS-driven lung tumorigenesis. Using GEM models, we tested whether PI3'-lipid signaling was limiting for the promotion of KRAS(G12D)-driven lung tumors by inducing the expression of KRAS(G12D) in the absence and presence of the activating PIK3CA(H1047R) mutation. PIK3CA(H1047R) expression alone failed to promote tumor formation, but dramatically enhanced tumorigenesis initiated by KRAS(G12D). We further observed that oncogenic cooperation between KRAS(G12D) and PIK3CA(H1047R) was accompanied by PI3Kα-mediated regulation of c-MYC, GSK3β, p27(KIP1), survivin, and components of the RB pathway, resulting in accelerated cell division of human or mouse lung cancer-derived cell lines. These data suggest that, although KRAS(G12D) may activate PI3Kα by direct biochemical mechanisms, PI3'-lipid signaling remains rate-limiting for the cell-cycle progression and expansion of early-stage KRAS(G12D)-initiated lung cells. Therefore, we provide a potential mechanistic rationale for the selection of KRAS and PIK3CA coactivating mutations in a number of human malignancies, with implications for the clinical deployment of PI3' kinase-targeted therapies.
Project description:The experiment is a study of the effects of signal strength in the Ras pathway. In particular, we studied a gain-of-function mutant of Kras, KrasG12D. We generated these mutant mice and performed microarray analyses on RNA extracted from whole skin, comparing KrasG12D mice to wild-type mice, with three replicates of each.