Synthesis, spectroscopic, and in vitro investigations of 2,6-diiodo-BODIPYs with PDT and bioimaging applications.
Ontology highlight
ABSTRACT: A series of five mono-styryl and their corresponding symmetric di-styryl-2,6-diiodo-BODIPYs containing indolyl, pyrrolyl, thienyl or tri(ethylene glycol)phenyl groups were synthesized using Knoevenagel condensations. The yields for the condensation reactions were improved up to 40% using microwave irradiation (90°C for 1h at 400W) due to lower decomposition of BODIPYs upon prolonged heating. The spectroscopic, structural (including the X-ray of a di-styryl-2,6-diiodo-BODIPY) and in vitro properties of the BODIPYs were investigated. The extension of ?-conjugation through the 3,5-dimethyls of the known phototoxic 2,6-diiodo-BODIPY 1 produced bathochromic shifts in the absorption and emission spectra, in the order of 63-125nm for the mono-styryl- and 128-220nm for the di-styryl-BODIPYs in DMSO. The largest red-shifts were observed for the indolyl-containing BODIPYs while the largest fluorescence quantum yields were observed for the tri(ethyleneglycol)phenylstyryl-BODIPYs. Among this series, only the mono-styryl-BODIPYs were phototoxic (IC50=2-15?M at 1.5J/cm(2)), and were observed to localize preferentially in the cell ER and mitochondria. On the other hand, the di-styryl-BODIPYs were found to have low or no phototoxicity (IC50>100?M at 1.5J/cm(2)). Among this series of compounds BODIPY 2a shows the most promise for application as photosensitizer in PDT.
SUBMITTER: Gibbs JH
PROVIDER: S-EPMC4369175 | biostudies-literature | 2015 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA