Project description:Granzymes (Grs) were discovered just over a quarter century ago. They are produced by cytotoxic T cells and natural killer cells and are released upon interaction with target cells. Intensive biochemical, genetic, and biological studies have been performed in order to study their roles in immunity and inflammation. This review summarizes research on the family of Grs.
Project description:PURPOSE OF REVIEW:A therapy that might cure HIV is a very important goal for the 30-40 million people living with HIV. Chimeric antigen receptor T cells have recently had remarkable success against certain leukemias, and there are reasons to believe they could be successful for HIV. This manuscript summarizes the published research on HIV CAR T cells and reviews the current anti-HIV chimeric antigen receptor strategies. RECENT FINDINGS:Research on anti-HIV chimeric antigen receptor T cells has been going on for at least the last 25 years. First- and second-generation anti-HIV chimeric antigen receptors have been developed. First-generation anti-HIV chimeric antigen receptors were studied in clinical trials more than 15 years ago, but did not have meaningful clinical efficacy. There are some reasons to be optimistic about second-generation anti-HIV chimeric antigen receptor T cells, but they have not yet been tested in vivo.
Project description:This retrospective on the 25th anniversary of the publication of the first structure of tubulin is shaped by my own personal experiences rather than being a strict and complete historical account of the event. It is a reflection on how working in science felt many years ago, on the struggles and the joys of reaching for the high-hanging fruit, and, ultimately, on how relevant or not our personal scientific contributions are to the broader scientific community. Writing it brought back memories of my unique and sadly lost postdoctoral advisor Ken Downing, who dreamt of this structure and brought it to fruition against all odds.
Project description:RAG1/2 (RAG) is an RNH-type DNA recombinase specially evolved to initiate V(D)J gene rearrangement for generating the adaptive immune response in jawed vertebrates. After decades of frustration with little mechanistic understanding of RAG, the crystal structure of mouse RAG recombinase opened the flood gates in early 2015. Structures of three different chordate RAG recombinases, including protoRAG, and the evolutionarily preceding transib transposase have been determined in complex with various DNA substrates. Biochemical studies along with the abundant structural data have shed light on how RAG has evolved from an ordinary transposase to a specialized recombinase in initiating gene rearrangement. RAG has also become one of the best characterized RNH-type recombinases, illustrating how a single active site can cleave the two antiparallel DNA strands of a double helix.
Project description:Since the formulation of the hopelessness theory of depression (Abramson, Metalsky, & Alloy, 1989) a quarter century ago, it has garnered considerable interest. The current paper presents a systematic review of this theory including its subsequent elaborations (Rose and Abramson's [1992] developmental elaboration, Abela and Sarin's [2002] weakest-link approach, Panzarella, Alloy, and Whitehouse's [2006] expansion of the hopelessness theory, and the hopelessness theory of suicide [Abramson et al., 2000]), followed by recommendations for future study. Although empirical support was consistently found for several major components of the hopelessness theory, further work is required assessing this theory in relation to clinically significant phenomena. Among the most significant hindrances to advancement in this area is the frequent conceptual confusion between the hopelessness theory and the reformulated learned helplessness theory.
Project description:MotivationWe explored how explainable artificial intelligence (XAI) can help to shed light into the inner workings of neural networks for protein function prediction, by extending the widely used XAI method of integrated gradients such that latent representations inside of transformer models, which were finetuned to Gene Ontology term and Enzyme Commission number prediction, can be inspected too.ResultsThe approach enabled us to identify amino acids in the sequences that the transformers pay particular attention to, and to show that these relevant sequence parts reflect expectations from biology and chemistry, both in the embedding layer and inside of the model, where we identified transformer heads with a statistically significant correspondence of attribution maps with ground truth sequence annotations (e.g. transmembrane regions, active sites) across many proteins.Availability and implementationSource code can be accessed at https://github.com/markuswenzel/xai-proteins.
Project description:A new high-resolution structure of a pain-sensing ion channel, TRPA1, provides a molecular scaffold to understand channel function. Unexpected structural features include a TRP-domain helix similar to TRPV1, a novel ligand-binding site, and an unusual C-terminal coiled coil stabilized by inositol hexakisphosphate (IP6). TRP-domain helices, which structurally act as a nexus for communication between the channel gates and its other domains, may thus be a feature conserved across the entire TRP family and, possibly, other allosterically-gated channels. Similarly, the TRPA1 antagonist-binding site could also represent a druggable location in other ion channels. Combined with known TRPA1 functional properties, the structural role for IP6 leads us to propose that polyphosphate unbinding could act as a molecular kill switch for TRPA1 inactivation. Finally, although packing of the TRPA1 membrane-proximal region hints at a mechanism for electrophile sensing, the details of how TRPA1 responds to noxious reactive electrophiles and temperature await future studies.