Unknown

Dataset Information

0

Gene-based association analysis identified novel genes associated with bone mineral density.


ABSTRACT: Genetic factors contribute to the variation of bone mineral density (BMD), which is a major risk factor of osteoporosis. The aim of this study was to identify more "novel" genes for BMD. Based on the publicly available SNP-based P values, we performed an initial gene-based analysis in a total of 32,961 individuals. Furthermore, we performed differential expression, pathway and protein-protein interaction analyses to find supplementary evidence to support the significance of the identified genes. About 21,695 genes for femoral neck (FN)-BMD and 21,683 genes for lumbar spine (LS)-BMD were analyzed using gene-based association analysis. A total of 35 FN-BMD associated genes and 53 LS-BMD associated genes were identified (P < 2.3×10(-6)) after Bonferroni correction. Among them, 64 genes have not been reported in previous SNP-based genome-wide association studies. Differential expression analysis further supported the significant associations of 14 genes with FN-BMD and 19 genes with LS-BMD. Especially, WNT3 and WNT9B in the Wnt signaling pathway for FN-BMD were further supported by pathway analysis and protein-protein interaction analysis. The present study took the advantage of gene-based association method to perform a supplementary analysis of the GWAS dataset and found some BMD-associated genes. The evidence taken together supported the importance of Wnt signaling pathway genes in determining osteoporosis. Our findings provided more insights into the genetic basis of osteoporosis.

SUBMITTER: Mo XB 

PROVIDER: S-EPMC4374695 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Gene-based association analysis identified novel genes associated with bone mineral density.

Mo Xing-Bo XB   Lu Xin X   Zhang Yong-Hong YH   Zhang Zeng-Li ZL   Deng Fei-Yan FY   Lei Shu-Feng SF  

PloS one 20150326 3


Genetic factors contribute to the variation of bone mineral density (BMD), which is a major risk factor of osteoporosis. The aim of this study was to identify more "novel" genes for BMD. Based on the publicly available SNP-based P values, we performed an initial gene-based analysis in a total of 32,961 individuals. Furthermore, we performed differential expression, pathway and protein-protein interaction analyses to find supplementary evidence to support the significance of the identified genes.  ...[more]

Similar Datasets

| S-EPMC7166125 | biostudies-literature
| S-EPMC9892108 | biostudies-literature
| S-EPMC8478845 | biostudies-literature
| S-EPMC3943521 | biostudies-literature
2021-01-12 | GSE158151 | GEO
| S-EPMC3682472 | biostudies-literature
| S-EPMC7883523 | biostudies-literature
| S-EPMC8456003 | biostudies-literature
| S-EPMC8933671 | biostudies-literature
| S-EPMC7822523 | biostudies-literature