Unknown

Dataset Information

0

Stimulation of GLP-1 secretion downstream of the ligand-gated ion channel TRPA1.


ABSTRACT: Stimulus-coupled incretin secretion from enteroendocrine cells plays a fundamental role in glucose homeostasis and could be targeted for the treatment of type 2 diabetes. Here, we investigated the expression and function of transient receptor potential (TRP) ion channels in enteroendocrine L cells producing GLP-1. By microarray and quantitative PCR analysis, we identified trpa1 as an L cell-enriched transcript in the small intestine. Calcium imaging of primary L cells and the model cell line GLUTag revealed responses triggered by the TRPA1 agonists allyl-isothiocyanate (mustard oil), carvacrol, and polyunsaturated fatty acids, which were blocked by TRPA1 antagonists. Electrophysiology in GLUTag cells showed that carvacrol induced a current with characteristics typical of TRPA1 and triggered the firing of action potentials. TRPA1 activation caused an increase in GLP-1 secretion from primary murine intestinal cultures and GLUTag cells, an effect that was abolished in cultures from trpa1(-/-) mice or by pharmacological TRPA1 inhibition. These findings present TRPA1 as a novel sensory mechanism in enteroendocrine L cells, coupled to the facilitation of GLP-1 release, which may be exploitable as a target for treating diabetes.

SUBMITTER: Emery EC 

PROVIDER: S-EPMC4375100 | biostudies-literature | 2015 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications


Stimulus-coupled incretin secretion from enteroendocrine cells plays a fundamental role in glucose homeostasis and could be targeted for the treatment of type 2 diabetes. Here, we investigated the expression and function of transient receptor potential (TRP) ion channels in enteroendocrine L cells producing GLP-1. By microarray and quantitative PCR analysis, we identified trpa1 as an L cell-enriched transcript in the small intestine. Calcium imaging of primary L cells and the model cell line GLU  ...[more]

Similar Datasets

| S-EPMC3365738 | biostudies-literature
| S-EPMC3021669 | biostudies-literature
| S-EPMC3119659 | biostudies-literature
| S-EPMC8244166 | biostudies-literature
| S-EPMC5551692 | biostudies-literature
| S-EPMC5550297 | biostudies-literature
| S-EPMC2941008 | biostudies-literature
| S-EPMC4407511 | biostudies-literature
| S-EPMC5786180 | biostudies-literature
| S-EPMC2912074 | biostudies-literature