Project description:Outbreaks of pandemic H1N1 2009 (pH1N1) in turkeys have been reported in several countries. Co-infection of pH1N1 and avian H9N2 influenza viruses in turkeys provide the opportunity for their reassortment, and novel reassortant viruses might further be transmitted to other avian species. However, virulence and transmission of those reassortant viruses in poultry remain unclear. In the present study, we generated 16 single-gene reassortant influenza viruses including eight reassortants on the pH1N1 background by individual replacement with a corresponding gene segment from H9N2 and eight reassortants on the H9N2 background replaced individually with corresponding gene from pH1N1, and characterized reassortants viruses in turkeys and chickens. We found that the pH1N1 virus dramatically increased its infectivity and transmissibility in turkeys and chickens after introducing any gene (except for PB2) from H9N2 virus, and H9N2 virus acquired single gene (except for HA) of pH1N1 almost did not influence its replication and transmission in turkeys and chickens. Additionally, 13 reassortant viruses transmitted from turkeys to chickens. Our results indicate that turkeys and chickens are susceptible to pH1N1-H9N2 reassortant viruses, and mixing breeding of different avian species would facilitate the transmission of these reassortant viruses.
Project description:In April 2017, three avian influenza (H7N9) viruses were isolated from chickens in southern China. Each virus had different insertion points in the cleavage site of the hemagglutinin protein compared to the first identified H7N9 virus. We determined that these viruses were double or triple reassortant viruses.
Project description:Avian influenza viruses rarely infect humans, but the recently emerged avian H7N9 influenza viruses have caused sporadic infections in humans in China, resulting in 440 confirmed cases with 122 fatalities as of 16 May 2014. In addition, epidemiologic surveys suggest that there have been asymptomatic or mild human infections with H7N9 viruses. These viruses replicate efficiently in mammals, show limited transmissibility in ferrets and guinea pigs, and possess mammalian-adapting amino acid changes that likely contribute to their ability to infect mammals. In this review, we summarize the characteristic features of the novel H7N9 viruses and assess their pandemic potential.
Project description:Data on risk factors for severe outcomes from 2009 pandemic influenza A (H1N1) virus infection are limited outside of developed countries.We reviewed medical charts to collect data from patients hospitalized with laboratory-confirmed 2009 H1N1 infection who were identified across China during the period from September 2009 through February 2010, and we analyzed potential risk factors associated with severe illness (defined as illness requiring intensive care unit admission or resulting in death).Among 9966 case patients, the prevalence of chronic medical conditions (33% vs 14%), pregnancy (15% vs 7%), or obesity (19% vs 14%) was significantly higher in those patients with severe illness than it was in those with less severe disease. In multivariable analyses, among nonpregnant case patients aged ? 2 years, having a chronic medical condition significantly increased the risk of severe outcome among all age groups, and obesity was a risk factor among those <60 years of age. The risk of severe illness among pregnant case patients was significantly higher for those in the second and third trimesters. The risk of severe illness was increased when oseltamivir treatment was initiated ? 5 days after illness onset (odds ratio, 1.42; 95% confidence interval, 1.20-1.67). For persons <60 years of age, the prevalence of obesity among case patients with severe illness was significantly greater than it was among those without severe illness or among the general population.Risk factors for severe 2009 H1N1 illness in China were similar to those observed in developed countries, but there was a lower prevalence of chronic medical conditions and a lower prevalence of obesity. Obesity was a risk factor among case patients < 60 years of age. Early initiation of oseltamivir treatment was most beneficial, and there was an increased risk of severe disease when treatment was started ? 5 days after illness onset.
Project description:Influenza A(H7N9) viruses isolated from humans show features suggesting partial adaptation to mammals. To provide insights into the pathogenesis of H7N9 virus infection, we compared risk factors, clinical presentation, and progression of patients hospitalized with H7N9, H5N1, and 2009 pandemic H1N1 (pH1N1) virus infections.We compared individual-level data from patients hospitalized with infection by H7N9 (n = 123), H5N1 (n = 119; 43 China, 76 Vietnam), and pH1N1 (n = 3486) viruses. We assessed risk factors for hospitalization after adjustment for age- and sex-specific prevalence of risk factors in the general Chinese population.The median age of patients with H7N9 virus infection was older than other patient groups (63 years; P < .001) and a higher proportion was male (71%; P < .02). After adjustment for age and sex, chronic heart disease was associated with an increased risk of hospitalization with H7N9 (relative risk, 9.68; 95% confidence interval, 5.24-17.9). H7N9 patients had similar patterns of leukopenia, thrombocytopenia, and elevated alanine aminotransferase, creatinine kinase, C-reactive protein, and lactate dehydrogenase to those seen in H5N1 patients, which were all significantly different from pH1N1 patients (P < .005). H7N9 patients had a longer duration of hospitalization than either H5N1 or pH1N1 patients (P < .001), and the median time from onset to death was 18 days for H7N9 (P = .002) vs 11 days for H5N1 and 15 days for pH1N1 (P = .154).The identification of known risk factors for severe seasonal influenza and the more protracted clinical course compared with that of H5N1 suggests that host factors are an important contributor to H7N9 severity.
Project description:The pandemic 2009 H1N1 influenza A virus emerged in humans and caused the first influenza pandemic of the 21st century. Mexican isolates, A/Mexico/4108/2009 (H1N1) (Mex4108) and A/Mexico/InDRE4478/2009 (H1N1) (Mex4487) derived from a mild case and from a cluster of severe cases, showed heterogeneity in virulence in a cynomolgus macaque model. To compare the more pathogenic differences, we generated recombinant viruses and compared their virulence in ferrets. Ferrets infected with recombinant Mex4487 displayed a slightly higher rate of viral replication and severe pneumonia in the early stage of infection. In contrast, prolonged lower virus shedding of recombinant Mex4108 than that of recombinant Mex4487 was detected in throat swabs. Thus, Mex4487 induces severe pneumonia in infected individuals, whereas Mex4108 might have wide-spreading potential with mild disease.
Project description:In investigating influenza in an immunodeficient child in China, in December 2010, we found that the influenza virus showed high sequence identity to that of swine. Serologic evidence indicated that viral persistence in pigs was the source of infection. Continued surveillance of pigs and systemic analysis of swine influenza isolates are needed.
Project description:Influenza A viruses (IAVs) continuously challenge the poultry industry and human health. Studies of IAVs are still hampered by the availability of suitable animal models. Chinese tree shrews (Tupaia belangeri chinensis) are closely related to primates physiologically and genetically, which make them a potential animal model for human diseases. In this study, we comprehensively evaluated infectivity and transmissibility in Chinese tree shrews by using pandemic H1N1 (A/Sichuan/1/2009, pdmH1N1), avian-origin H5N1 (A/Chicken/Gansu/2/2012, H5N1) and early human-origin H7N9 (A/Suzhou/SZ19/2014, H7N9) IAVs. We found that these viruses replicated efficiently in primary tree shrew cells and tree shrews without prior adaption. Pathological lesions in the lungs of the infected tree shrews were severe on day 3 post-inoculation, although clinic symptoms were self-limiting. The pdmH1N1 and H7N9 viruses, but not the H5N1 virus, transmitted among tree shrews by direct contact. Interestingly, we also observed that unadapted H7N9 virus could transmit from tree shrews to naïve guinea pigs. Virus-inoculated tree shrews generated a strong humoral immune response and were protected from challenge with homologous virus. Taken together, our findings suggest the Chinese tree shrew would be a useful mammalian model to study the pathogenesis and transmission of IAVs.
Project description:To study the precise role of the neuraminidase (NA), and its stalk region in particular, in the assembly, release, and entry of influenza virus, we deleted the 20-aa stalk segment from 2009 pandemic H1N1 NA (09N1) and inserted this segment, now designated 09s60, into the stalk region of a highly pathogenic avian influenza (HPAI) virus H5N1 NA (AH N1). The biological characterization of these wild-type and mutant NAs was analyzed by pseudotyped particles (pseudoparticles) system. Compared with the wild-type AH N1, the wild-type 09N1 exhibited higher NA activity and released more pseudoparticles. Deletion/insertion of the 09s60 segment did not alter this relationship. The infectivity of pseudoparticles harboring NA in combination with the hemagglutinin from HPAI H5N1 (AH H5) was decreased by insertion of 09s60 into AH N1 and was increased by deletion of 09s60 from 09N1. When isolated from the wild-type 2009H1N1 virus, 09N1 existed in the forms (in order of abundance) dimer>>tetramer>monomer, but when isolated from pseudoparticles, 09N1 existed in the forms dimer>monomer>>>tetramer. After deletion of 09s60, 09N1 existed in the forms monomer>>>dimer. AH N1 from pseudoparticles existed in the forms monomer>>dimer, but after insertion of 09s60, it existed in the forms dimer>>monomer. Deletion/insertion of 09s60 did not alter the NA glycosylation pattern of 09N1 or AH N1. The 09N1 was more sensitive than the AH N1 to the NA inhibitor oseltamivir, suggesting that the infectivity-enhancing effect of oseltamivir correlates with robust NA activity.