Project description:In investigating influenza in an immunodeficient child in China, in December 2010, we found that the influenza virus showed high sequence identity to that of swine. Serologic evidence indicated that viral persistence in pigs was the source of infection. Continued surveillance of pigs and systemic analysis of swine influenza isolates are needed.
Project description:In April 2017, three avian influenza (H7N9) viruses were isolated from chickens in southern China. Each virus had different insertion points in the cleavage site of the hemagglutinin protein compared to the first identified H7N9 virus. We determined that these viruses were double or triple reassortant viruses.
Project description:BackgroundAvian influenza A (H5N6) virus poses a great threat to the human health since it is capable to cross the species barrier and infect humans. Although human infections are believed to largely originate from poultry contaminations, the transmissibility is unclear and only limited information was available on poultry environment contaminations, especially in Fujian Province.MethodsA total of 4901 environmental samples were collected and tested for Avian Influenza Virus (AIV) from six cities in Fujian Province through the Fujian Influenza Surveillance System from 2013 to 2017. Two patient-related samples were taken from Fujian's first confirmed H5N6 human case and his backyard chicken feces in 2017. Chi-square test or Fisher's exact probability test was used to compare the AIV and the viral subtype positive rates among samples from different Surveillance cities, surveillance sites, sample types, and seasons. Phylogenetic tree analysis and molecular analysis were conducted to track the viral transmission route of the human infection and to map out the evolutions of H5N6 in Fujian.ResultsThe overall positive rate of the H5 subtype AIVs was 4.24% (208/4903). There were distinctive differences (p < 0.05) in the positive rates in samples from different cities, sample sites, sample types and seasons. The viruses from the patient and his backyard chicken feces shared high homologies (99.9-100%) in all the eight gene segments. Phylogenetic trees also showed that these two H5N6 viruses were closely related to each other, and were classified into the same genetic clade 2.3.4.4 with another six H5N6 isolates from the environmental samples. The patient's H5N6 virus carried genes from H6N6, H5N8 and H5N6 viruses originated from different areas. The R294K or N294S substitution was not detected in the neuraminidase (NA). The S31 N substitution in the matrix2 (M2) gene was detected but only in one strain from the environmental samples.ConclusionsThe H5 subtype of AIVs has started circulating in the poultry environments in Fujian Province. The patient's viral strain originated from the chicken feces in his backyard. Genetic reassortment in H5N6 viruses in Fujian Province was indicated. The H5N6 viruses currently circulating in Fujian Province were still commonly sensitive to Oseltamivir and Zanamivir, but the resistance against Amantadine has emerged.
Project description:The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient's adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread.
Project description:Human influenza infections display a strongly seasonal pattern. However, whether H7N9 and H5N1 infections correlate with climate factors has not been examined. Here, we analyzed 350 cases of H7N9 infection and 47 cases of H5N1 infection. The spatial characteristics of these cases revealed that H5N1 infections mainly occurred in the South, Middle, and Northwest of China, while the occurrence of H7N9 was concentrated in coastal areas of East and South of China. Aside from spatial-temporal characteristics, the most adaptive meteorological conditions for the occurrence of human infections by these two viral subtypes were different. We found that H7N9 infections correlate with climate factors, especially temperature (TEM) and relative humidity (RHU), while H5N1 infections correlate with TEM and atmospheric pressure (PRS). Hence, we propose a risky window (TEM 4-14?°C and RHU 65-95%) for H7N9 infection and (TEM 2-22?°C and PRS 980-1025 kPa) for H5N1 infection. Our results represent the first step in determining the effects of climate factors on two different virus infections in China and provide warning guidelines for the future when provinces fall into the risky windows. These findings revealed integrated predictive meteorological factors rooted in statistic data that enable the establishment of preventive actions and precautionary measures against future outbreaks.
Project description:The continuing pandemic threat posed by avian influenza A/H5N1 viruses calls for improved insights into their evolution during human infection. We performed whole genome deep sequencing of respiratory specimens from 44 H5N1-infected individuals from Indonesia and found substantial within-host viral diversity. At nearly 30% of genome positions multiple amino acids were observed within or across samples, including positions implicated in aerosol transmission between ferrets. Amino acid variants detected our cohort were often found more frequently in available H5N1 sequences of human than avian isolates. We additionally identified previously unreported amino acid variants and multiple variants that increased in proportion over time in available sequential samples. Given the importance of the polymerase complex for host adaptation, we tested 121 amino acid variants found in the PB2, PB1 and PA subunits for their effects on polymerase activity in human cells. We identified multiple single amino acid variants in all three polymerase subunits that substantially increase polymerase activity including some with effects comparable to that of the widely recognized adaption and virulence marker PB2-E627 K. These results indicate highly dynamic evolutionary processes during human H5N1 virus infection and the potential existence of previously undocumented adaptive pathways.
Project description:Since the influenza pandemic in 2009, there has been an increased focus on swine influenza A virus (swIAV) surveillance. This paper describes the results of the surveillance of swIAV in Danish swine from 2011 to 2018. In total, 3800 submissions were received with a steady increase in swIAV-positive submissions, reaching 56% in 2018. Full-genome sequences were obtained from 129 swIAV-positive samples. Altogether, 17 different circulating genotypes were identified including six novel reassortants harboring human seasonal IAV gene segments. The phylogenetic analysis revealed substantial genetic drift and also evidence of positive selection occurring mainly in antigenic sites of the hemagglutinin protein and confirmed the presence of a swine divergent cluster among the H1pdm09Nx (clade 1A.3.3.2) viruses. The results provide essential data for the control of swIAV in pigs and emphasize the importance of contemporary surveillance for discovering novel swIAV strains posing a potential threat to the human population.