Hypothyroidism and brain developmental players.
Ontology highlight
ABSTRACT: Most of our knowledge on the mechanisms of thyroid hormone (TH) dependent brain development is based on clinical observations and animal studies of maternal/fetal hypothyroidism. THs play an essential role in brain development and hormone deficiency during critical phases in fetal life may lead to severe and permanent brain damage. Maternal hypothyroidism is considered the most common cause of fetal TH deficiency, but the problem may also arise in the fetus. In the case of congenital hypothyroidism due to defects in fetal thyroid gland development or hormone synthesis, clinical symptoms at birth are often mild as a result of compensatory maternal TH supply. TH transporters (THTs) and deiodinases (Ds) are important regulators of intracellular triiodothyronine (T3) availability and therefore contribute to the control of thyroid receptors (TRs)-dependent CNS development and early embryonic life. Defects in fetal THTs or Ds may have more impact on fetal brain since they can result in intracellular T3 deficiency despite sufficient maternal TH supply. One clear example is the recent discovery of mutations in the TH transporter (monocarboxylate transporter 8; MCT8) that could be linked to a syndrome of severe and non reversible psychomotor retardation. Even mild and transient changes in maternal TH levels can directly affect and alter the gene expression profile, and thus disturb fetal brain development. Animal studies are needed to increase our understanding of the exact role of THTs and Ds in prenatal brain development.
SUBMITTER: Ahmed RG
PROVIDER: S-EPMC4397876 | biostudies-literature | 2015
REPOSITORIES: biostudies-literature
ACCESS DATA