Unknown

Dataset Information

0

Piccolo Directs Activity Dependent F-Actin Assembly from Presynaptic Active Zones via Daam1.


ABSTRACT: The dynamic assembly of filamentous (F) actin plays essential roles in the assembly of presynaptic boutons, the fusion, mobilization and recycling of synaptic vesicles (SVs), and presynaptic forms of plasticity. However, the molecular mechanisms that regulate the temporal and spatial assembly of presynaptic F-actin remain largely unknown. Similar to other F-actin rich membrane specializations, presynaptic boutons contain a set of molecules that respond to cellular cues and trans-synaptic signals to facilitate activity-dependent assembly of F-actin. The presynaptic active zone (AZ) protein Piccolo has recently been identified as a key regulator of neurotransmitter release during SV cycling. It does so by coordinating the activity-dependent assembly of F-Actin and the dynamics of key plasticity molecules including Synapsin1, Profilin and CaMKII. The multidomain structure of Piccolo, its exquisite association with the AZ, and its ability to interact with a number of actin-associated proteins suggest that Piccolo may function as a platform to coordinate the spatial assembly of F-actin. Here we have identified Daam1, a Formin that functions with Profilin to drive F-actin assembly, as a novel Piccolo binding partner. We also found that within cells Daam1 activation promotes Piccolo binding, an interaction that can spatially direct the polymerization of F-Actin. Moreover, similar to Piccolo and Profilin, Daam1 loss of function impairs presynaptic-F-actin assembly in neurons. These data suggest a model in which Piccolo directs the assembly of presynaptic F-Actin from the AZ by scaffolding key actin regulatory proteins including Daam1.

SUBMITTER: Wagh D 

PROVIDER: S-EPMC4405365 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Piccolo Directs Activity Dependent F-Actin Assembly from Presynaptic Active Zones via Daam1.

Wagh Dhananjay D   Terry-Lorenzo Ryan R   Waites Clarissa L CL   Leal-Ortiz Sergio A SA   Maas Christoph C   Reimer Richard J RJ   Garner Craig C CC  

PloS one 20150421 4


The dynamic assembly of filamentous (F) actin plays essential roles in the assembly of presynaptic boutons, the fusion, mobilization and recycling of synaptic vesicles (SVs), and presynaptic forms of plasticity. However, the molecular mechanisms that regulate the temporal and spatial assembly of presynaptic F-actin remain largely unknown. Similar to other F-actin rich membrane specializations, presynaptic boutons contain a set of molecules that respond to cellular cues and trans-synaptic signals  ...[more]

Similar Datasets

| S-EPMC3210199 | biostudies-literature
| S-EPMC3063406 | biostudies-literature
| S-EPMC5132261 | biostudies-literature
| S-EPMC1939941 | biostudies-literature
| S-EPMC2871490 | biostudies-literature
| S-EPMC6730341 | biostudies-literature
| S-EPMC5247443 | biostudies-literature
| S-EPMC4709825 | biostudies-literature
| S-EPMC5070803 | biostudies-literature
| S-EPMC8321554 | biostudies-literature