Unknown

Dataset Information

0

Monitoring phases and phase transitions in phosphatidylethanolamine monolayers using active interfacial microrheology.


ABSTRACT: Active interfacial microrheology is a sensitive tool to detect phase transitions and headgroup order in phospholipid monolayers. The re-orientation of a magnetic nickel nanorod is used to explore changes in the surface rheology of 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), which differ by two CH2 groups in their alkyl chains. Phosphatidylethanolamines such as DLPE and DMPE are a major component of cell membranes in bacteria and in the nervous system. At room temperature, DLPE has a liquid expanded (LE) phase for surface pressure, ? < ?38 mN m(-1); DMPE has an LE phase for ? < ?7 mN m(-1). In their respective LE phases, DLPE and DMPE show no measurable change in surface viscosity with ?, consistent with a surface viscosity <10(-9) N s m(-1), the resolution of our technique. However, there is a measurable, discontinuous change in the surface viscosity at the LE to liquid condensed (LC) transition for both DLPE and DMPE. This discontinuous change is correlated with a significant increase in the surface compressibility modulus (or isothermal two-dimensional bulk modulus). In the LC phase of DMPE there is an exponential increase in surface viscosity with ? consistent with a two-dimensional free area model. The second-order LC to solid (S) transition in DMPE is marked by an abrupt onset of surface elasticity; there is no measurable elasticity in the LC phase. A measurable surface elasticity in the S phase suggests a change in the molecular ordering or interactions of the DMPE headgroups that is not reflected in isotherms or in grazing incidence X-ray diffraction. This onset of measurable elasticity is also seen in DLPE, even though no indication of a LC-S transition is visible in the isotherms.

SUBMITTER: Ghazvini S 

PROVIDER: S-EPMC4408260 | biostudies-literature | 2015 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Monitoring phases and phase transitions in phosphatidylethanolamine monolayers using active interfacial microrheology.

Ghazvini Saba S   Ricke Brandon B   Zasadzinski Joseph A JA   Dhar Prajnaparamita P  

Soft matter 20150501 17


Active interfacial microrheology is a sensitive tool to detect phase transitions and headgroup order in phospholipid monolayers. The re-orientation of a magnetic nickel nanorod is used to explore changes in the surface rheology of 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), which differ by two CH2 groups in their alkyl chains. Phosphatidylethanolamines such as DLPE and DMPE are a major component of cell membranes in bacteria  ...[more]

Similar Datasets

| S-EPMC3113294 | biostudies-literature
| S-EPMC5522960 | biostudies-literature
| S-EPMC8608831 | biostudies-literature
| S-EPMC6974954 | biostudies-literature
| S-EPMC7439307 | biostudies-literature
| S-EPMC2856140 | biostudies-literature
| S-EPMC10284850 | biostudies-literature
| S-EPMC5071885 | biostudies-other
| S-EPMC5744407 | biostudies-literature
| S-EPMC11243583 | biostudies-literature