Unknown

Dataset Information

0

A nanotherapy strategy significantly enhances anticryptosporidial activity of an inhibitor of bifunctional thymidylate synthase-dihydrofolate reductase from Cryptosporidium.


ABSTRACT: Cryptosporidiosis, a gastrointestinal disease caused by protozoans of the genus Cryptosporidium, is a common cause of diarrheal diseases and often fatal in immunocompromised individuals. Bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from Cryptosporidium hominis (C. hominis) has been a molecular target for inhibitor design. C. hominis TS-DHFR inhibitors with nM potency at a biochemical level have been developed however drug delivery to achieve comparable antiparasitic activity in Cryptosporidium infected cell culture has been a major hurdle for designing effective therapies. Previous mechanistic and structural studies have identified compound 906 as a nM C. hominis TS-DHFR inhibitor in vitro, having ?M antiparasitic activity in cell culture. In this work, proof of concept studies are presented using a nanotherapy approach to improve drug delivery and the antiparasitic activity of 906 in cell culture. We utilized PLGA nanoparticles that were loaded with 906 (NP-906) and conjugated with antibodies to the Cryptosporidium specific protein, CP2, on the nanoparticle surface in order to specifically target the parasite. Our results indicate that CP2 labeled NP-906 (CP2-NP-906) reduces the level of parasites by 200-fold in cell culture, while NP-906 resulted in 4.4-fold decrease. Moreover, the anticryptosporidial potency of 906 improved 15 to 78-fold confirming the utility of the antibody conjugated nanoparticles as an effective drug delivery strategy.

SUBMITTER: Mukerjee A 

PROVIDER: S-EPMC4416209 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4427026 | biostudies-literature
| S-EPMC4866688 | biostudies-literature
| S-EPMC4815301 | biostudies-literature
| S-EPMC3169404 | biostudies-literature
| S-EPMC8104401 | biostudies-literature
| S-EPMC3444756 | biostudies-literature
| S-EPMC3776329 | biostudies-literature
| S-EPMC3946055 | biostudies-literature
| S-EPMC1952288 | biostudies-literature
| S-EPMC2658879 | biostudies-literature