Project description:Cancer remains a leading cause of death worldwide. Despite many signs of progress, currently available cancer treatments often do not provide desired outcomes for too many cancers. Therefore, newer and more effective therapeutic approaches are needed. Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively targets and kills cancer cells while sparing normal ones. In the past several decades, many different OV candidates have been developed and tested in both laboratory settings as well as in cancer patient clinical trials. Many approaches have been taken to overcome the limitations of OVs, including engineering OVs to selectively activate anti-tumor immune responses. However, newer approaches like the combination of OVs with current immunotherapies to convert "immune-cold" tumors to "immune-hot" will almost certainly improve the potency of OVs. Here, we discuss strategies that are explored to further improve oncolytic virotherapy.
Project description:Oncolytic virus therapy is perhaps the next major breakthrough in cancer treatment following the success in immunotherapy using immune checkpoint inhibitors. Oncolytic viruses are defined as genetically engineered or naturally occurring viruses that selectively replicate in and kill cancer cells without harming the normal tissues. T-Vec (talimogene laherparepvec), a second-generation oncolytic herpes simplex virus type 1 (HSV-1) armed with GM-CSF, was recently approved as the first oncolytic virus drug in the USA and Europe. The phase III trial proved that local intralesional injections with T-Vec in advanced malignant melanoma patients can not only suppress the growth of injected tumors but also act systemically and prolong overall survival. Other oncolytic viruses that are closing in on drug approval in North America and Europe include vaccinia virus JX-594 (pexastimogene devacirepvec) for hepatocellular carcinoma, GM-CSF-expressing adenovirus CG0070 for bladder cancer, and Reolysin (pelareorep), a wild-type variant of reovirus, for head and neck cancer. In Japan, a phase II clinical trial of G47∆, a third-generation oncolytic HSV-1, is ongoing in glioblastoma patients. G47∆ was recently designated as a "Sakigake" breakthrough therapy drug in Japan. This new system by the Japanese government should provide G47∆ with priority reviews and a fast-track drug approval by the regulatory authorities. Whereas numerous oncolytic viruses have been subjected to clinical trials, the common feature that is expected to play a major role in prolonging the survival of cancer patients is an induction of specific antitumor immunity in the course of tumor-specific viral replication. It appears that it will not be long before oncolytic virus therapy becomes a standard therapeutic option for all cancer patients.
Project description:Pancreatic cancer is a highly aggressive and lethal cancer characterized by high invasiveness, local and extensive dissemination at time of diagnosis and resistance to treatment. Few therapies have shown efficacy in the past and even standard of care therapies yield only modest improvements in the mortality of patients with advanced or metastatic disease. Efforts have been undertaken to study the pancreatic tumor microenvironment and have established its complex and immunosuppressive nature which could explain the high resistance to chemotherapy. Novel therapies targeting the tumor microenvironment with an aim to decrease this resistance, improve immune tolerance and increase the efficacy of the current treatment have shown some promising preliminary results in preclinical and clinical trials. We review the current advances in the field of immunotherapy and their effectiveness as a potential treatment strategy in the pancreatic cancer.
Project description:Oncolytic viruses have emerged as a novel class of anti-cancer therapeutics with one virus already receiving United States Food and Drug Administration (FDA) approval (talimogene laherparepvec) and many others undergoing testing in clinical trials. These viruses have direct lytic effects on tumor cells as well as immunomodulatory functions to increase inflammatory cell infiltrates in the tumor microenvironment. Despite all of the advances in cancer care, pancreatic cancer remains a highly lethal malignancy. One of the main barriers to successful systemic treatment of the disease is the fibrotic tumor stroma, as the unique extracellular matrix creates an environment that promotes tumor growth and is resistant to chemotherapy and other anti-cancer agents. The pleiotropic effects of Vitamin D have been widely studied, but recent research has now demonstrated it to be an effective agent in modulating pancreatic cancer stroma to facilitate the enhanced delivery of cytotoxic chemotherapy and immunogenicity in response to treatment. This review will explore the combination of Vitamin D with oncolytic viruses and how this novel application of Vitamin D's ability to modulate pancreatic tumor stroma may result in a potential mechanism for increasing the efficacy of oncolytic virotherapy in pancreatic cancer.
Project description:Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy.
Project description:The limited effectiveness of conventional therapy for malignant pleural mesothelioma demands innovative approaches to this difficult disease. Even with aggressive multimodality treatment of surgery, radiation, and/or chemotherapy, the median survival is only 1-2 years depending on stage and histology. Oncolytic viral therapy has emerged in the last several decades as a rapidly advancing field of immunotherapy studied in a wide spectrum of malignancies. Mesothelioma makes an ideal candidate for studying oncolysis given the frequently localized pattern of growth and pleural location providing access to direct intratumoral injection of virus. Therefore, despite being a relatively uncommon disease, the multitude of viral studies for mesothelioma can provide insight for applying such therapy to other malignancies. This article will begin with a review of the general principles of oncolytic therapy focusing on antitumor efficacy, tumor selectivity, and immune system activation. The second half of this review will detail results of preclinical models and human studies for oncolytic virotherapy in mesothelioma.
Project description:PurposeBreast cancer is the most commonly diagnosed cancer in women, with many efforts aimed at reducing acute and late toxicity given the generally favorable clinical outcomes with the current standard of care. Carbon ion radiation therapy is an emerging technique that may reduce dose to adjacent organs at risk while allowing dose escalation to the target. Given the efficacy of the standard treatments for breast cancer, there have been few prospective studies to date investigating carbon ion radiation therapy in breast cancer.MethodsPubMed/Medline, Ebsco, Cochrane, and Scopus were systematically reviewed using the search terms "carbon ion" and "breast" in November 2019. Out of the 76 articles screened, 26 articles were included.ResultsThis comprehensive review describes the physical and biological properties of carbon ion radiation therapy, with an emphasis on how these properties can be applied in the setting of breast cancer. Studies investigating the role of carbon ion radiation therapy in early stage breast cancers are reviewed. Additionally, the use of carbon ion radiation therapy in locally advanced disease, recurrent disease, and radiation-induced angiosarcoma are discussed.ConclusionAlthough the data is limited, the early clinical results are promising. Further clinical trials are needed, especially in the setting of locally advanced and recurrent disease, to fully define the potential role of carbon ion radiation therapy in the treatment of breast cancer.
Project description:In recent years, circular RNAs (circRNAs) have attracted considerable attention because they play a significant role in many fields of cancer biology. Additionally, it has become increasingly clear that circRNAs have the potential to make contributions to the successful application of individualized cancer medicine. This brief review introduces circRNAs by describing their potential as a biomarker and therapeutic target and discussing the possible strategies to target them. This review also presents the challenges that are encountered by circRNAs for their definitive entry into clinical practice. Clearly, our understanding of circRNAs helps to add a new dimension to the molecular structure of cancer and will provide many new opportunities for cancer treatment.
Project description:The recent introduction of viruses as a weapon against cancer can be regarded as one of the most intriguing approaches in the context of precision medicine. The role of immune checkpoint inhibitors has been extensively studied in early and advanced cancer stages, with extraordinary results. Although there is a good tolerability profile, especially when compared with conventional chemotherapy, severe immune-related adverse events have emerged as a potential limitation. Moreover, there are still treatment-resistant cases and thus further treatment options need to be implemented. Several in vitro and in vivo studies have been conducted and are ongoing to develop oncolytic viruses (OVs) as a tool to modulate the immune system response. OVs are attenuated viruses that can kill cancer cells after having infected them, producing microenvironment remodelling and antitumour immune response. The potential of oncolytic virotherapy is to contrast the absence of T cell infiltrates, converting 'cold' tumours into 'hot' ones, thus improving the performance of the immune system. Breast cancer, the second most common cause of cancer-related deaths among women, is considered a 'cold' tumour. In this context, oncolytic virotherapy might well be considered as a promising strategy. This review summarises the current status, clinical applications and future development of OVs, focusing on breast cancer treatment.
Project description:The ability for cells to harness alternative splicing enables them to diversify their proteome in order to carry out complex biological functions and adapt to external and internal stimuli. The spliceosome is the multiprotein-RNA complex charged with the intricate task of alternative splicing. Aberrant splicing can arise from abnormal spliceosomes or splicing factors and drive cancer development and progression. This review will provide an overview of the alternative splicing process and aberrant splicing in cancer, with a focus on serine/arginine-rich (SR) proteins and their recently reported roles in cancer development and progression and beyond. Recent mapping of the spliceosome, its associated splicing factors, and their relationship to cancer have opened the door to novel therapeutic approaches that capitalize on the widespread influence of alternative splicing. We conclude by discussing small molecule inhibitors of the spliceosome that have been identified in an evolving era of cancer treatment.