Biomechanical comparison of four mandibular angle fracture fixation techniques.
Ontology highlight
ABSTRACT: The aim of this study was to make a comparison of the biomechanical behavior of four different internal fixation systems for mandibular angle fractures. A total of 40 polyurethane mandible replicas were employed with different fixation methods: group 1SP, one 2.0-mm four-hole miniplate; group 2PPL, two 2.0-mm four-hole parallel miniplates; group 3DP, one 3D 2.0-mm four-hole miniplate; and group 3DPP, one 3D 2.0-mm eight-hole miniplate. Each group was subjected to incisal or homolateral molar region loading. The load resistance values were measured at load application causing tip displacement of 1, 3, and 5?mm, and at the time at which the system achieves its maximum strength (MS). Means and standard deviations were compared among groups using analysis of variance and the Tukey test. Group 2PPL showed higher strength for all the displacements. For incisal loading, no statistically significant differences were found between groups 1SP, 3DP, and 3DPP. For molar loading, group 1SP and 3DPP showed statistically significant differences. For MS testing, group 1SP and 2PPL showed statistically significant differences in incisal loading; group 1SP and 3DP showed no statistically significant differences; and group 3DPP showed lower values of strength. Two parallel miniplates provide the most favorable mechanical behavior under the conditions tested.
SUBMITTER: Munante-Cardenas JL
PROVIDER: S-EPMC4428728 | biostudies-literature | 2015 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA