Unknown

Dataset Information

0

Characterization of a Highly pH Stable Chi-Class Glutathione S-Transferase from Synechocystis PCC 6803.


ABSTRACT: Glutathione S-transferases (GSTs) are multifunctional enzymes present in virtually all organisms. Besides having an essential role in cellular detoxification, they also perform various other functions, including responses in stress conditions and signaling. GSTs are highly studied in plants and animals; however, the knowledge regarding GSTs in cyanobacteria seems rudimentary. In this study, we report the characterization of a highly pH stable GST from the model cyanobacterium--Synechocystis PCC 6803. The gene sll0067 was expressed in Escherichia coli (E. coli), and the protein was purified to homogeneity. The expressed protein exists as a homo-dimer, which is composed of about 20 kDa subunit. The results of the steady-state enzyme kinetics displayed protein's glutathione conjugation activity towards its class specific substrate- isothiocyanate, having the maximal activity with phenethyl isothiocyanate. Contrary to the poor catalytic activity and low specificity towards standard GST substrates such as 1-chloro-2,4-dinitrobenzene by bacterial GSTs, PmGST B1-1 from Proteus mirabilis, and E. coli GST, sll0067 has broad substrate degradation capability like most of the mammalian GST. Moreover, we have shown that cyanobacterial GST sll0067 is catalytically efficient compared to the best mammalian enzymes. The structural stability of GST was studied as a function of pH. The fluorescence and CD spectroscopy in combination with size exclusion chromatography showed a highly stable nature of the protein over a broad pH range from 2.0 to 11.0. To the best of our knowledge, this is the first GST with such a wide range of pH related structural stability. Furthermore, the presence of conserved Proline-53, structural motifs such as N-capping box and hydrophobic staple further aid in the stability and proper folding of cyanobacterial GST-sll0067.

SUBMITTER: Pandey T 

PROVIDER: S-EPMC4429112 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Characterization of a Highly pH Stable Chi-Class Glutathione S-Transferase from Synechocystis PCC 6803.

Pandey Tripti T   Singh Sudhir Kumar SK   Chhetri Gaurav G   Tripathi Timir T   Singh Arvind Kumar AK  

PloS one 20150512 5


Glutathione S-transferases (GSTs) are multifunctional enzymes present in virtually all organisms. Besides having an essential role in cellular detoxification, they also perform various other functions, including responses in stress conditions and signaling. GSTs are highly studied in plants and animals; however, the knowledge regarding GSTs in cyanobacteria seems rudimentary. In this study, we report the characterization of a highly pH stable GST from the model cyanobacterium--Synechocystis PCC  ...[more]

Similar Datasets

| S-EPMC4309839 | biostudies-literature
| S-EPMC9599700 | biostudies-literature
| S-EPMC2681892 | biostudies-literature
| S-EPMC3953072 | biostudies-literature
| S-EPMC2799798 | biostudies-literature
| S-EPMC5324202 | biostudies-literature
| S-EPMC4809984 | biostudies-literature
| S-EPMC4470828 | biostudies-literature
| S-EPMC5784004 | biostudies-literature
| S-EPMC5779733 | biostudies-literature