TLR5 Ligand-Secreting T Cells Reshape the Tumor Microenvironment and Enhance Antitumor Activity.
Ontology highlight
ABSTRACT: The tumor microenvironment counters antitumor T-cell responses, in part, by blunting their activation and infiltration. Ligands that engage Toll-like receptors (TLR) on T cells and antigen-presenting cells can act as potent immune adjuvants. In this study, we show how tumor-reactive T cells engineered to secrete bacterial flagellin, a TLR5 ligand (TLR5L), can engender a costimulatory signal that augments antitumor activity. Human T cells engineered to express TLR5L along with DMF5, a T-cell receptor that recognizes the melanoma antigen MART-127-35 (DMF5(TLR5L) T cells), displayed increased proliferation, cytokine production, and cytolytic activity against melanoma cells. In a xenogenetic model, adoptive transfer of DMF5(TLR5L) T cells reduced tumor growth kinetics and prolonged mouse survival. In a syngeneic model, similarly engineered melanoma-reactive T cells (pmel(TLR5L)) displayed a relative increase in antitumor activity against established tumors, compared with unmodified T cells. In this model, we documented increased T-cell infiltration associated with increased levels of CCR1 and CXCR3 levels on T cells, a reduction in PD-1(+)Lag3(+) T cells and CD11(+)Gr1(+) myeloid-derived suppressor cells, and changes in the chemokine/cytokine profile of tumors. Our findings show how T cell-mediated delivery of a TLR agonist to the tumor site can contribute to antitumor efficacy, in the context of adoptive T-cell immunotherapy.
SUBMITTER: Geng D
PROVIDER: S-EPMC4433615 | biostudies-literature | 2015 May
REPOSITORIES: biostudies-literature
ACCESS DATA