Unknown

Dataset Information

0

Deterministic identification of specific individuals from GWAS results.


ABSTRACT:

Motivation

Genome-wide association studies (GWASs) are commonly applied on human genomic data to understand the causal gene combinations statistically connected to certain diseases. Patients involved in these GWASs could be re-identified when the studies release statistical information on a large number of single-nucleotide polymorphisms. Subsequent work, however, found that such privacy attacks are theoretically possible but unsuccessful and unconvincing in real settings.

Results

We derive the first practical privacy attack that can successfully identify specific individuals from limited published associations from the Wellcome Trust Case Control Consortium (WTCCC) dataset. For GWAS results computed over 25 randomly selected loci, our algorithm always pinpoints at least one patient from the WTCCC dataset. Moreover, the number of re-identified patients grows rapidly with the number of published genotypes. Finally, we discuss prevention methods to disable the attack, thus providing a solution for enhancing patient privacy.

Availability and implementation

Proofs of the theorems and additional experimental results are available in the support online documents. The attack algorithm codes are publicly available at https://sites.google.com/site/zhangzhenjie/GWAS_attack.zip. The genomic dataset used in the experiments is available at http://www.wtccc.org.uk/ on request.

SUBMITTER: Cai R 

PROVIDER: S-EPMC4443672 | biostudies-literature | 2015 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Deterministic identification of specific individuals from GWAS results.

Cai Ruichu R   Hao Zhifeng Z   Winslett Marianne M   Xiao Xiaokui X   Yang Yin Y   Zhang Zhenjie Z   Zhou Shuigeng S  

Bioinformatics (Oxford, England) 20150127 11


<h4>Motivation</h4>Genome-wide association studies (GWASs) are commonly applied on human genomic data to understand the causal gene combinations statistically connected to certain diseases. Patients involved in these GWASs could be re-identified when the studies release statistical information on a large number of single-nucleotide polymorphisms. Subsequent work, however, found that such privacy attacks are theoretically possible but unsuccessful and unconvincing in real settings.<h4>Results</h4  ...[more]

Similar Datasets

| S-EPMC8623533 | biostudies-literature
| S-EPMC8319312 | biostudies-literature
| S-EPMC7687904 | biostudies-literature
| S-EPMC3496570 | biostudies-literature
| S-EPMC6464125 | biostudies-literature
| S-EPMC5000665 | biostudies-literature
| S-EPMC7075643 | biostudies-literature
| S-EPMC8497599 | biostudies-literature
| S-EPMC3751588 | biostudies-literature
| S-EPMC4351846 | biostudies-literature