Unknown

Dataset Information

0

Mitochondrial reshaping accompanies neural differentiation in the developing spinal cord.


ABSTRACT: Mitochondria, long known as the cell powerhouses, also regulate redox signaling and arbitrate cell survival. The organelles are now appreciated to exert additional critical roles in cell state transition from a pluripotent to a differentiated state through balancing glycolytic and respiratory metabolism. These metabolic adaptations were recently shown to be concomitant with mitochondrial morphology changes and are thus possibly regulated by contingencies of mitochondrial dynamics. In this context, we examined, for the first time, mitochondrial network plasticity during the transition from proliferating neural progenitors to post-mitotic differentiating neurons. We found that mitochondria underwent morphological reshaping in the developing neural tube of chick and mouse embryos. In the proliferating population, mitochondria in the mitotic cells lying at the apical side were very small and round, while they appeared thick and short in interphase cells. In differentiating neurons, mitochondria were reorganized into a thin, dense network. This reshaping of the mitochondrial network was not specific of a subtype of progenitors or neurons, suggesting that this is a general event accompanying neurogenesis in the spinal cord. Our data shed new light on the various changes occurring in the mitochondrial network during neurogenesis and suggest that mitochondrial dynamics could play a role in the neurogenic process.

SUBMITTER: Mils V 

PROVIDER: S-EPMC4447341 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mitochondrial reshaping accompanies neural differentiation in the developing spinal cord.

Mils Valérie V   Bosch Stéphanie S   Roy Julie J   Bel-Vialar Sophie S   Belenguer Pascale P   Pituello Fabienne F   Miquel Marie-Christine MC  

PloS one 20150528 5


Mitochondria, long known as the cell powerhouses, also regulate redox signaling and arbitrate cell survival. The organelles are now appreciated to exert additional critical roles in cell state transition from a pluripotent to a differentiated state through balancing glycolytic and respiratory metabolism. These metabolic adaptations were recently shown to be concomitant with mitochondrial morphology changes and are thus possibly regulated by contingencies of mitochondrial dynamics. In this contex  ...[more]

Similar Datasets

| S-EPMC7748286 | biostudies-literature
| S-EPMC7794431 | biostudies-literature
| S-EPMC3423038 | biostudies-literature
| S-EPMC8567249 | biostudies-literature
| S-EPMC7260853 | biostudies-literature
| S-SCDT-EMBOR-2021-52728V1 | biostudies-other
| S-EPMC7562945 | biostudies-literature
| S-EPMC9253790 | biostudies-literature
| S-EPMC8836636 | biostudies-literature
| S-EPMC5469937 | biostudies-literature