Unknown

Dataset Information

0

Phosphodiesterase 7 inhibition induces dopaminergic neurogenesis in hemiparkinsonian rats.


ABSTRACT: Parkinson's disease is characterized by a loss of dopaminergic neurons in a specific brain region, the ventral midbrain. Parkinson's disease is diagnosed when approximately 50% of the dopaminergic neurons of the substantia nigra pars compacta (SNpc) have degenerated and the others are already affected by the disease. Thus, it is conceivable that all therapeutic strategies, aimed at neuroprotection, start too late. Therefore, an urgent medical need exists to discover new pharmacological targets and novel drugs with disease-modifying properties. In this regard, modulation of endogenous adult neurogenesis toward a dopaminergic phenotype might provide a new strategy to target Parkinson's disease by partially ameliorating the dopaminergic cell loss that occurs in this disorder. We have previously shown that a phosphodiesterase 7 (PDE7) inhibitor, S14, exerts potent neuroprotective and anti-inflammatory effects in different rodent models of Parkinson's disease, indicating that this compound could represent a novel therapeutic agent to stop the dopaminergic cell loss that occurs during the progression of the disease. In this report we show that, in addition to its neuroprotective effect, the PDE7 inhibitor S14 is also able to induce endogenous neuroregenerative processes toward a dopaminergic phenotype. We describe a population of actively dividing cells that give rise to new neurons in the SNpc of hemiparkinsonian rats after treatment with S14. In conclusion, our data identify S14 as a novel regulator of dopaminergic neuron generation.Parkinson's disease is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the ventral midbrain. Currently, no cure and no effective disease-modifying therapy are available for Parkinson's disease; therefore, an urgent medical need exists to discover new pharmacological targets and novel drugs for the treatment of this disorder. The present study reports that an inhibitor of the enzyme phosphodiesterase 7 (S14) induces proliferation in vitro and in vivo of neural stem cells, promoting its differentiation toward a dopaminergic phenotype and therefore enhancing dopaminergic neuron generation. Because this drug is also able to confer neuroprotection of these cells in animal models of Parkinson's disease, S14 holds great promise as a therapeutic new strategy for this disorder.

SUBMITTER: Morales-Garcia JA 

PROVIDER: S-EPMC4449102 | biostudies-literature | 2015 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Phosphodiesterase 7 inhibition induces dopaminergic neurogenesis in hemiparkinsonian rats.

Morales-Garcia Jose A JA   Alonso-Gil Sandra S   Gil Carmen C   Martinez Ana A   Santos Angel A   Perez-Castillo Ana A  

Stem cells translational medicine 20150429 6


<h4>Unlabelled</h4>Parkinson's disease is characterized by a loss of dopaminergic neurons in a specific brain region, the ventral midbrain. Parkinson's disease is diagnosed when approximately 50% of the dopaminergic neurons of the substantia nigra pars compacta (SNpc) have degenerated and the others are already affected by the disease. Thus, it is conceivable that all therapeutic strategies, aimed at neuroprotection, start too late. Therefore, an urgent medical need exists to discover new pharma  ...[more]

Similar Datasets

| S-EPMC6119240 | biostudies-literature
| S-EPMC3649752 | biostudies-literature
| S-EPMC3535262 | biostudies-literature
| S-EPMC5091819 | biostudies-literature
| S-EPMC5103347 | biostudies-literature
| S-EPMC9212717 | biostudies-literature
| S-EPMC3212711 | biostudies-literature
| S-EPMC9763121 | biostudies-literature
| S-EPMC5819290 | biostudies-literature
| S-EPMC7954513 | biostudies-literature