Phylogenetically Distant Viruses Use the Same BH3-Only Protein Puma to Trigger Bax/Bak-Dependent Apoptosis of Infected Mouse and Human Cells.
Ontology highlight
ABSTRACT: Viruses can trigger apoptosis of infected host cells if not counteracted by cellular or viral anti-apoptotic proteins. These protective proteins either inhibit the activation of caspases or they act as Bcl-2 homologs to prevent Bax/Bak-mediated outer mitochondrial membrane permeabilization (MOMP). The exact mechanism by which viruses trigger MOMP has however remained enigmatic. Here we use two distinct types of viruses, a double stranded DNA virus, herpes simplex virus-1 (HSV-1) and a positive sense, single stranded RNA virus, Semliki Forest virus (SFV) to show that the BH3-only protein Puma is the major mediator of virus-induced Bax/Bak activation and MOMP induction. Indeed, when Puma was genetically deleted or downregulated by shRNA, mouse embryonic fibroblasts and IL-3-dependent monocytes as well as human colon carcinoma cells were as resistant to virus-induced apoptosis as their Bax/Bak double deficient counterparts (Bax/Bak-/-). Puma protein expression started to augment after 2 h postinfection with both viruses. Puma mRNA levels increased as well, but this occurred after apoptosis initiation (MOMP) because it was blocked in cells lacking Bax/Bak or overexpressing Bcl-xL. Moreover, none of the classical Puma transcription factors such as p53, p73 or p65 NF?B were involved in HSV-1-induced apoptosis. Our data suggest that viruses use a Puma protein-dependent mechanism to trigger MOMP and apoptosis in host cells.
SUBMITTER: Papaianni E
PROVIDER: S-EPMC4452691 | biostudies-literature | 2015
REPOSITORIES: biostudies-literature
ACCESS DATA