Unknown

Dataset Information

0

Mechanistic studies of the tyrosinase-catalyzed oxidative cyclocondensation of 2-aminophenol to 2-aminophenoxazin-3-one.


ABSTRACT: Tyrosinase (EC 1.14.18.1) catalyzes the monophenolase and diphenolase reaction associated with vertebrate pigmentation and fruit/vegetable browning. Tyrosinase is an oxygen-dependent, dicopper enzyme that has three states: Emet, Eoxy, and Edeoxy. The diphenolase activity can be carried out by both the met and the oxy states of the enzyme while neither mono- nor diphenolase activity results from the deoxy state. In this study, the oxidative cyclocondensation of 2-aminophenol (OAP) to the corresponding 2-aminophenoxazin-3-one (APX) by mushroom tyrosinase was investigated. Using a combination of various steady- and pre-steady state methodologies, we have investigated the kinetic and chemical mechanism of this reaction. The kcat for OAP is 75 ± 2s(-1), K(OAP)M = 1.8 ± 0.2mM, K(O2)M =25 ± 4 ?M with substrates binding in a steady-state preferred fashion. Stopped flow and global analysis support a model where OAP preferentially binds to the oxy form over the met (k7 ? k1). For the met form, His269 and His61 are the proposed bases, while the oxy form uses the copper-peroxide and His61 for the sequential deprotonation of anilinic and phenolic hydrogens. Solvent KIEs show proton transfer to be increasingly rate limiting for kcat/K(OAP)M as [O2] ? 0 ?M (1.38 ± 0.06) decreasing to 0.83 ± 0.03 as [O2] ? ? reflecting a partially rate limiting ?-OH bond cleavage (E met) and formation (E oxy) following protonation in the transition state. The coupling and cyclization reactions of o-quinone imine and OAP pass through a phenyliminocyclohexadione intermediate to APX, forming at a rate of 6.91 ± 0.03 ?M(-1)s(-1) and 2.59E-2 ± 5.31E-4s(-1). Differences in reactivity attributed to the anilinic moiety of OAP with o-diphenols are discussed.

SUBMITTER: Washington C 

PROVIDER: S-EPMC4456232 | biostudies-literature | 2015 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mechanistic studies of the tyrosinase-catalyzed oxidative cyclocondensation of 2-aminophenol to 2-aminophenoxazin-3-one.

Washington Courtney C   Maxwell Jamere J   Stevenson Joenathan J   Malone Gregory G   Lowe Edward W EW   Zhang Qiang Q   Wang Guangdi G   McIntyre Neil R NR  

Archives of biochemistry and biophysics 20150514


Tyrosinase (EC 1.14.18.1) catalyzes the monophenolase and diphenolase reaction associated with vertebrate pigmentation and fruit/vegetable browning. Tyrosinase is an oxygen-dependent, dicopper enzyme that has three states: Emet, Eoxy, and Edeoxy. The diphenolase activity can be carried out by both the met and the oxy states of the enzyme while neither mono- nor diphenolase activity results from the deoxy state. In this study, the oxidative cyclocondensation of 2-aminophenol (OAP) to the correspo  ...[more]

Similar Datasets

| S-EPMC1130691 | biostudies-other
| S-EPMC3087841 | biostudies-literature
| S-EPMC6467780 | biostudies-literature
| S-EPMC4701576 | biostudies-literature
| S-EPMC397389 | biostudies-literature
| S-EPMC2895562 | biostudies-literature
| S-EPMC2756425 | biostudies-literature
| S-EPMC7418105 | biostudies-literature
| S-EPMC6688169 | biostudies-literature
| S-EPMC6334628 | biostudies-literature