Unknown

Dataset Information

0

Modifying Role of GSTP1 Polymorphism on the Association between Tea Fluoride Exposure and the Brick-Tea Type Fluorosis.


ABSTRACT: Brick tea type fluorosis is a public health concern in the north-west area of China. The association between SNPs of genes influencing bone mass and fluorosis has attracted attention, but the association of SNPs with the risk of brick-tea type of fluorosis has not been reported.To investigate the modifying roles of GSTP1 rs1695 polymorphisms on this association.A cross-sectional study was conducted. Brick-tea water was tested by the standard of GB1996-2005 (China). Urinary fluoride was tested by the standard of WS/T 89-2006 (China). Skeletal fluorosis was diagnosed by X-ray, the part we scheduled was forearm, shank, and pelvic, then diagnosed the skeletal fluorosis by the standard of WS/192-2008 (China). Gene polymorphism was tested by Sequenom MassARRAY system.The prevalence rate in different ethnical participants was different: Tibetan individuals had the highest prevalence rate of skeletal fluorosis. There were significant differences in genotype frequencies of GSTP1 Rs1695 among different ethnical participants (p<0.001): Tibetan, Mongolian and Han subjects with homozygous wild type (GSTP1-AA) genotype were numerically higher than Kazakh and Russian subjects (p<0.001). Compared to Tibetan participants who carried homozygous A allele of GSTP1 Rs1695, Tibetan participants who carried G allele had a significantly decreased risk of skeletal fluorosis (OR = 0.558 [95% CI, 0.326-0.955]). For Kazakh participants, a decreased risk of skeletal fluorosis among carriers of the G allele was limited to non high-loaded fluoride status (OR = 0. 166 [95% CI, 0.035-0.780] vs. OR = 1.478 [95% CI, 0.866-2.552] in participants with high-loaded fluoride status). Neither SNP-IF nor SNP-age for GSTP1 Rs1695 was observed.The prevalence rate of the brick tea type fluorosis might have ethnic difference. For Tibetan individuals, who had the highest prevalence rate, G allele of GSTP1 Rs1695 might be a protective factor for brick tea type skeletal fluorosis.

SUBMITTER: Wu J 

PROVIDER: S-EPMC4457801 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Modifying Role of GSTP1 Polymorphism on the Association between Tea Fluoride Exposure and the Brick-Tea Type Fluorosis.

Wu Junhua J   Wang Wei W   Liu Yang Y   Sun Jing J   Ye Yan Y   Li Bingyun B   Liu Xiaona X   Liu Hongxu H   Sun Zhenqi Z   Li Mang M   Cui Jing J   Sun Dianjun D   Yang Yanmei Y   Gao Yanhui Y  

PloS one 20150605 6


<h4>Background</h4>Brick tea type fluorosis is a public health concern in the north-west area of China. The association between SNPs of genes influencing bone mass and fluorosis has attracted attention, but the association of SNPs with the risk of brick-tea type of fluorosis has not been reported.<h4>Objective</h4>To investigate the modifying roles of GSTP1 rs1695 polymorphisms on this association.<h4>Methods</h4>A cross-sectional study was conducted. Brick-tea water was tested by the standard o  ...[more]

Similar Datasets

| S-EPMC5129067 | biostudies-literature
| S-EPMC5289533 | biostudies-literature
| S-EPMC5227713 | biostudies-literature
| S-EPMC5772608 | biostudies-literature
| S-EPMC6646644 | biostudies-literature
| S-EPMC6268391 | biostudies-literature
| S-EPMC9261264 | biostudies-literature
| S-EPMC3887428 | biostudies-literature
| S-EPMC4913997 | biostudies-literature
2016-09-01 | GSE65662 | GEO