Unknown

Dataset Information

0

Tunable porosities and shapes of fullerene-like spheres.


ABSTRACT: The formation of reversible switchable nanostructures monitored by solution and solid-state methods is still a challenge in supramolecular chemistry. By a comprehensive solid state and solution study we demonstrate the potential of the fivefold symmetrical building block of pentaphosphaferrocene in combination with Cu(I) halides to switch between spheres of different porosity and shape. With increasing amount of CuX, the structures of the formed supramolecules change from incomplete to complete spherically shaped fullerene-like assemblies possessing an Ih -C80 topology at one side and to a tetrahedral-structured aggregate at the other. In the solid state, the formed nano-sized aggregates reach an outer diameter of 3.14 and 3.56?nm, respectively. This feature is used to reversibly encapsulate and release guest molecules in solution.

SUBMITTER: Dielmann F 

PROVIDER: S-EPMC4464546 | biostudies-literature | 2015 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tunable porosities and shapes of fullerene-like spheres.

Dielmann Fabian F   Fleischmann Matthias M   Heindl Claudia C   Peresypkina Eugenia V EV   Virovets Alexander V AV   Gschwind Ruth M RM   Scheer Manfred M  

Chemistry (Weinheim an der Bergstrasse, Germany) 20150311 16


The formation of reversible switchable nanostructures monitored by solution and solid-state methods is still a challenge in supramolecular chemistry. By a comprehensive solid state and solution study we demonstrate the potential of the fivefold symmetrical building block of pentaphosphaferrocene in combination with Cu(I) halides to switch between spheres of different porosity and shape. With increasing amount of CuX, the structures of the formed supramolecules change from incomplete to complete  ...[more]

Similar Datasets

| S-EPMC8596871 | biostudies-literature
| S-EPMC6790965 | biostudies-literature
| S-EPMC6899814 | biostudies-literature
2005-09-27 | GSE3364 | GEO
| S-EPMC6155130 | biostudies-literature
| S-EPMC4241035 | biostudies-literature