Unknown

Dataset Information

0

HIV-1 Myristoylated Nef Treatment of Murine Microglial Cells Activates Inducible Nitric Oxide Synthase, NO2 Production and Neurotoxic Activity.


ABSTRACT:

Background

The potential role of the human immunodeficiency virus-1 (HIV-1) accessory protein Nef in the pathogenesis of neuroAIDS is still poorly understood. Nef is a molecular adapter that influences several cellular signal transduction events and membrane trafficking. In human macrophages, Nef expression induces the production of extracellular factors (e.g. pro-inflammatory chemokines and cytokines) and the recruitment of T cells, thus favoring their infection and its own transfer to uninfected cells via exosomes, cellular protrusions or cell-to-cell contacts. Murine cells are normally not permissive for HIV-1 but, in transgenic mice, Nef is a major disease determinant. Both in human and murine macrophages, myristoylated Nef (myr+Nef) treatment has been shown to activate NF-?B, MAP kinases and interferon responsive factor 3 (IRF-3), thereby inducing tyrosine phosphorylation of signal transducers and activator of transcription (STAT)-1, STAT-2 and STAT-3 through the production of proinflammatory factors.

Methodology/principal findings

We report that treatment of BV-2 murine microglial cells with myr+Nef leads to STAT-1, -2 and -3 tyrosine phosphorylation and upregulates the expression of inducible nitric oxide synthase (iNOS) with production of nitric oxide. We provide evidence that extracellular Nef regulates iNOS expression through NF-?B activation and, at least in part, interferon-? (IFN?) release that acts in concert with Nef. All of these effects require both myristoylation and a highly conserved acidic cluster in the viral protein. Finally, we report that Nef induces the release of neurotoxic factors in the supernatants of microglial cells.

Conclusions

These results suggest a potential role of extracellular Nef in promoting neuronal injury in the murine model. They also indicate a possible interplay between Nef and host factors in the pathogenesis of neuroAIDS through the production of reactive nitrogen species in microglial cells.

SUBMITTER: Mangino G 

PROVIDER: S-EPMC4465743 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC1174990 | biostudies-literature
| S-EPMC2552398 | biostudies-literature
| S-EPMC4712158 | biostudies-literature
| S-EPMC6908786 | biostudies-literature
| S-EPMC4387900 | biostudies-literature
| S-EPMC5485952 | biostudies-literature
2015-02-02 | GSE65436 | GEO
| S-EPMC2596912 | biostudies-literature
| S-EPMC4501590 | biostudies-literature
| S-EPMC555713 | biostudies-literature