Genetic analyses of penicillin binding protein determinants in multidrug-resistant Streptococcus pneumoniae serogroup 19 CC320/271 clone with high-level resistance to third-generation cephalosporins.
Ontology highlight
ABSTRACT: We describe the dissemination of a multidrug-resistant (MDR) serogroup 19 pneumococcal clone of representative multilocus sequence type 271 (ST271) with high-level resistance to cefotaxime in Hong Kong and penicillin binding protein (pbp) genes and its relationships to Taiwan(19F)-14 and the prevalent multidrug-resistant 19A clone (MDR19A-ST320). A total of 472 nonduplicate isolates from 2006 and 2011 were analyzed. Significant increases in the rates of nonsusceptibility to penicillin (PEN) (MIC ? 4.0 ?g/ml; 9.9 versus 23.3%; P = 0.0005), cefotaxime (CTX) (MIC ? 2.0 ?g/ml; 12.2 versus 30.3%; P < 0.0001 [meningitis MIC ? 1.0 ?g/ml; 30.2 versus 48.7%; P = 0.0001]), and erythromycin (ERY) (69.2 versus 84.0%; P = 0.0003) were noted when rates from 2006 and 2011 were compared. The CTX-resistant isolates with MICs of 8 ?g/ml in 2011 were of serotype 19F, belonging to ST271. Analyses of the penicillin binding protein 2x (PBP2x) amino acid sequences in relation to the corresponding sequences of the R6 strain revealed M339F, E378A, M400T, and Y595F substitutions found within the ST271 clone but not present in Taiwan(19F)-14 or MDR19A. In addition, PBP2bs of ST271 strains and that of the Taiwan(19F)-14 clone were characterized by a unique amino acid substitution, E369D, while ST320 possessed the unique amino acid substitution K366N, as does that of MDR19A in the United States. We hypothesize that ST271 originated from the Taiwan(19F)-14 lineage, which had disseminated in Hong Kong in the early 2000s, and conferred higher-level ?-lactam and cefotaxime resistance through acquisitions of 19 additional amino acid substitutions in PBP2b (amino acid [aa] positions 538 to 641) and altered PBP2x via recombination events. The serogroup 19 MDR CC320/271 clone warrants close monitoring to evaluate its effect after the switch to expanded conjugate vaccines.
SUBMITTER: Ip M
PROVIDER: S-EPMC4468688 | biostudies-literature | 2015 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA