Project description:Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world and is characterized by a heterogeneous clinical course. This variability in clinical course has spiked the search for prognostic markers able to predict patient evolution at the moment of diagnosis. Markers demonstrated to be of value are the mutation status of the immunoglobulin heavy chain variable region genes (IGHV) and lipoprotein lipase (LPL) expression. High LPL mRNA expression has been associated with short treatment free (TFS) and decreased overall survival (OS) in CLL. The LPL SNPs rs301 (T<C), rs328 (C<G) and rs13702 (T<C) have been associated with various metabolic disorders, but the association with CLL evolution is unknown. Here, in a cohort of 248 patients, we show that patients with the LPL SNP rs13702 wild-type T/T genotype had significantly shorter OS than patients with C/C and T/C genotypes (median time until CLL related death: 90 and 156 months respectively, p=0.008). The same was observed for LPL SNP rs301 (median time until CLL related death T/T: 102 and C/C, T/C: 144 months, p=0.03). Both SNPs rs301 and rs13702 were significantly associated with each other and notably, no association was found between IGHV status and presence of the SNP genotypes, indicating that these LPL SNPs are reliable prognostic markers that could add extra prognostic and predictive information to classical markers and help to improve the management of CLL.
Project description:Lipoprotein lipase (LPL) is a central enzyme in lipid metabolism. Due to its catalytic activity, LPL is involved in metabolic pathways exploited by various solid and hematologic malignancies to provide an extra energy source to the tumor cell. We and others described a link between the expression of LPL in the tumor cell and a poor clinical outcome of patients suffering Chronic Lymphocytic Leukemia (CLL). This leukemia is characterized by a slow accumulation of mainly quiescent clonal CD5 positive B cells that infiltrates secondary lymphoid organs, bone marrow and peripheral blood. Despite LPL being found to be a reliable molecular marker for CLL prognosis, its functional role and the molecular mechanisms regulating its expression are still matter of debate. Herein we address some of these questions reviewing the current state of the art of LPL research in CLL and providing some insights into where currently unexplored questions may lead to.
Project description:LPL co-deregulated genes after LPL specific siRNA knock-down In chronic lymphocytic leukemia (CLL), lipoprotein lipase (LPL) mRNA overexpression is an established poor prognostic marker, its function, however, is poorly understood. Measuring extracellular LPL enzymatic activity and protein, we found no difference between levels in CLL patients and those of controls, both before and after heparin treatment in vivo and in vitro. Investigating LPL knock down effects, we determined five potential downstream targets, of which one gene, STXBP3, reportedly is involved in fatty acid metabolism.
Project description:LPL co-deregulated genes after LPL specific siRNA knock-down In chronic lymphocytic leukemia (CLL), lipoprotein lipase (LPL) mRNA overexpression is an established poor prognostic marker, its function, however, is poorly understood. Measuring extracellular LPL enzymatic activity and protein, we found no difference between levels in CLL patients and those of controls, both before and after heparin treatment in vivo and in vitro. Investigating LPL knock down effects, we determined five potential downstream targets, of which one gene, STXBP3, reportedly is involved in fatty acid metabolism. While possibly reflecting an epigenetic switch towards an incorrect transcriptional program, LPL overexpression by itself does not appear to significantly influence CLL cell survival.
Project description:Cytosine derivative dysregulations represent important epigenetic modifications whose impact on the clinical outcome in chronic lymphocytic leukemia (CLL) is incompletely understood. Hence, global levels of 5-methylcytosine (5-mCyt), 5-hydroxymethylcytosine (5-hmCyt), 5-carboxylcytosine (5-CaCyt) and 5-hydroxymethyluracil were tested in purified B cells from CLL patients (n = 55) and controls (n = 17). The DNA methylation 'writers' (DNA methyltransferases [DNMT1/3A/3B]), 'readers' (methyl-CpG-binding domain [MBD2/4]), 'editors' (ten-eleven translocation [TET1/2/3]) and 'modulators' (SAT1) were also evaluated. Accordingly, patients were stratified into three subgroups. First, a subgroup with a global deficit in cytosine derivatives characterized by hyperlymphocytosis, reduced median progression free survival (PFS = 52 months) and shorter treatment free survival (TFS = 112 months) was identified. In this subgroup, major epigenetic modifications were highlighted including a reduction of 5-mCyt, 5-hmCyt, 5-CaCyt associated with DNMT3A, MBD2/4 and TET1/2 downregulation. Second, the cytosine derivative analysis revealed a subgroup with a partial deficit (PFS = 84, TFS = 120 months), mainly affecting DNA demethylation (5-hmCyt reduction, SAT1 induction). Third, a subgroup epigenetically similar to controls was identified (PFS and TFS > 120 months). The prognostic impact of stratifying CLL patients within three epigenetic subgroups was confirmed in a validation cohort. In conclusion, our results suggest that dysregulations of cytosine derivative regulators represent major events acquired during CLL progression and are independent from IGHV mutational status.
Project description:Individual cytokines and groups of cytokines that might represent networks in chronic lymphocytic leukemia (CLL) were analyzed and their prognostic values determined. Serum levels of 23 cytokines were measured in 84 patients and 49 age-matched controls; 17 levels were significantly elevated in patients. Unsupervised hierarchical bicluster analysis identified 3 clusters (CLs) of highly correlated but differentially expressed cytokines: CL1 (CXCL9, CXCL10, CXCL11, CCL3, CCL4, CCL19, IL-5, IL-12, and IFN?), CL2 (TNF?, IL-6, IL-8, and GM-CSF), and CL3 (IL-1?, IL-2, IL-4, IL-15, IL-17, and IFN?). Combination scores integrating expression of CL1/CL2 or CL1/CL3 strongly correlated (P < .005) with time-to-first-treatment and overall survival (OS), respectively. Patients with the worst course had high CL1 and low CL2 or CL3 levels. Multivariate analysis revealed that CL1/CL2 combination score and immunoglobulin heavy chain variable region mutation status were independent prognostic indicators for time-to-first-treatment, whereas CL1/CL3 combination score and immunoglobulin heavy chain variable region mutation status were independent markers for OS. Thus, we identified groups of cytokines differentially expressed in CLL that are independent prognostic indicators of aggressive disease and OS. These findings indicate the value of multicytokine analyses for prognosis and suggest therapeutic strategies in CLL aimed at reducing CL1 and increasing CL2/CL3 cytokines.
Project description:Genomic analyses of chronic lymphocytic leukemia (CLL) identified somatic mutations and associations of clonal diversity with adverse outcomes. Clonal evolution likely has therapeutic implications but its dynamic is less well studied. We studied clonal composition and prognostic value of seven recurrently mutated driver genes using targeted next-generation sequencing in 643 CLL patients and found higher frequencies of mutations in TP53 (35 vs. 12%, p?<?0.001) and SF3B1 (20 vs. 11%, p?<?0.05) and increased number of (sub)clonal (p?<?0.0001) mutations in treated patients. We next performed an in-depth evaluation of clonal evolution on untreated CLL patients (50 "progressors" and 17 matched "non-progressors") using a 404 gene-sequencing panel and identified novel mutated genes such as AXIN1, SDHA, SUZ12, and FOXO3. Progressors carried more mutations at initial presentation (2.5 vs. 1, p?<?0.0001). Mutations in specific genes were associated with increased (SF3B1, ATM, and FBXW7) or decreased progression risk (AXIN1 and MYD88). Mutations affecting specific signaling pathways, such as Notch and MAP kinase pathway were enriched in progressive relative to non-progressive patients. These data extend earlier findings that specific genomic alterations and diversity of subclones are associated with disease progression and persistence of disease in CLL and identify novel recurrently mutated genes and associated outcomes.
Project description:Long non-coding RNAs (lncRNAs) represent a novel class of functional RNA molecules with an important emerging role in cancer. To elucidate their potential pathogenetic role in chronic lymphocytic leukemia (CLL), a biologically and clinically heterogeneous neoplasia, we investigated lncRNAs expression in a prospective series of 217 early-stage Binet A CLL patients and 26 different subpopulations of normal B-cells, through a custom annotation pipeline of microarray data. Our study identified a 24-lncRNA-signature specifically deregulated in CLL compared with the normal B-cell counterpart. Importantly, this classifier was validated on an independent data set of CLL samples. Belonging to the lncRNA signature characterizing distinct molecular CLL subgroups, we identified lncRNAs recurrently associated with adverse prognostic markers, such as unmutated IGHV status, CD38 expression, 11q and 17p deletions, and NOTCH1 mutations. In addition, correlation analyses predicted a putative lncRNAs interplay with genes and miRNAs expression. Finally, we generated a 2-lncRNA independent risk model, based on lnc-IRF2-3 and lnc-KIAA1755-4 expression, able to distinguish three different prognostic groups in our series of early-stage patients. Overall, our study provides an important resource for future studies on the functions of lncRNAs in CLL, and contributes to the discovery of novel molecular markers with clinical relevance associated with the disease.
Project description:BackgroundB-cell chronic lymphocytic leukemia (BCLL) in dogs generally is considered an indolent disease, but previous studies indicate a wide range in survival times.ObjectivesWe hypothesized that BCLL has a heterogeneous clinical course, similar to chronic lymphocytic leukemia in humans. We aimed to assess presentation and outcome in dogs with BCLL and evaluate the prognostic relevance of clinical and flow cytometric factors.AnimalsOne hundred and twenty-one dogs with BCLL diagnosed by flow cytometry. Three breed groups were represented: small breed dogs (n = 55) because of increased risk of BCLL; Boxers (n = 33) because of preferential use of unmutated immunoglobulin genes; and other breeds (n = 33).MethodsRetrospective study reviewing signalment, clinicopathologic data, physical examination findings, treatment, and survival of dogs with BCLL. Cellular proliferation, determined by the percentage of Ki67-expressing CD21+ B-cells by flow cytometry, was measured in 39 of 121 cases. Clinical and laboratory variables were evaluated for association with survival.ResultsThe median survival time (MST) for all cases was 300 days (range, 1-1644 days). Boxers had significantly shorter survival (MST, 178 days) than non-Boxers (MST, 423 days; P < .0001), and no significant survival difference was found between small breeds and other non-Boxer breeds. Cases with high Ki67 (>40% Ki67-expressing B-cells) had significantly shorter survival (MST, 173 days) than did cases with <40% Ki67 (MST undetermined; P = .03), regardless of breed. Cases with a high lymphocyte count (>60 000 lymphocytes/μL) or clinical signs at presentation had significantly shorter survival.Conclusions and clinical importanceB-cell chronic lymphocytic leukemia had a variable clinical course and Boxer dogs and cases with high Ki67 had more aggressive disease.
Project description:Recent advances in cancer characterization have consistently revealed marked heterogeneity, impeding the completion of integrated molecular and clinical maps for each malignancy. Here, we focus on chronic lymphocytic leukemia (CLL), a B cell neoplasm with variable natural history that is conventionally categorized into two subtypes distinguished by extent of somatic mutations in the heavy-chain variable region of immunoglobulin genes (IGHV). To build the 'CLL map,' we integrated genomic, transcriptomic and epigenomic data from 1,148 patients. We identified 202 candidate genetic drivers of CLL (109 new) and refined the characterization of IGHV subtypes, which revealed distinct genomic landscapes and leukemogenic trajectories. Discovery of new gene expression subtypes further subcategorized this neoplasm and proved to be independent prognostic factors. Clinical outcomes were associated with a combination of genetic, epigenetic and gene expression features, further advancing our prognostic paradigm. Overall, this work reveals fresh insights into CLL oncogenesis and prognostication.