Unknown

Dataset Information

0

Iron deficiency in barley plants: phytosiderophore release, iron translocation, and DNA methylation.


ABSTRACT: All living organisms require iron (Fe) to carry out many crucial metabolic pathways. Despite its high concentrations in the geosphere, Fe bio-availability to plant roots can be very scarce. To cope with Fe shortage, plants can activate different strategies. For these reasons, we investigated Fe deficient Hordeum vulgare L. plants by monitoring growth, phytosiderophores (PS) release, iron content, and translocation, and DNA methylation, with respect to Fe sufficient ones. Reductions of plant growth, roots to shoots Fe translocation, and increases in PS release were found. Experiments on DNA methylation highlighted significant differences between fully and hemy-methylated sequences in Fe deficient plants, with respect to Fe sufficient plants. Eleven DNA bands differently methylated were found in starved plants. Of these, five sequences showed significant alignment to barley genes encoding for a glucosyltransferase, a putative acyl carrier protein, a peroxidase, a ?-glucosidase and a transcription factor containing a Homeodomin. A resupply experiment was carried out on starved barley re-fed at 13 days after sowing (DAS), and it showed that plants did not recover after Fe addition. In fact, Fe absorption and root to shoot translocation capacities were impaired. In addition, resupplied barley showed DNA methylation/demethylation patterns very similar to that of barley grown in Fe deprivation. This last finding is very encouraging because it indicates as these variations/modifications could be transmitted to progenies.

SUBMITTER: Bocchini M 

PROVIDER: S-EPMC4496560 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Iron deficiency in barley plants: phytosiderophore release, iron translocation, and DNA methylation.

Bocchini Marika M   Bartucca Maria Luce ML   Ciancaleoni Simona S   Mimmo Tanja T   Cesco Stefano S   Pii Youry Y   Albertini Emidio E   Del Buono Daniele D  

Frontiers in plant science 20150709


All living organisms require iron (Fe) to carry out many crucial metabolic pathways. Despite its high concentrations in the geosphere, Fe bio-availability to plant roots can be very scarce. To cope with Fe shortage, plants can activate different strategies. For these reasons, we investigated Fe deficient Hordeum vulgare L. plants by monitoring growth, phytosiderophores (PS) release, iron content, and translocation, and DNA methylation, with respect to Fe sufficient ones. Reductions of plant grow  ...[more]

Similar Datasets

| S-EPMC3037657 | biostudies-literature
| S-EPMC4363515 | biostudies-literature
| S-EPMC4883707 | biostudies-literature
| S-EPMC7696116 | biostudies-literature
| S-EPMC3722493 | biostudies-literature
| S-EPMC5103167 | biostudies-literature
| S-EPMC11366225 | biostudies-literature
| S-EPMC7946895 | biostudies-literature
| S-EPMC5604592 | biostudies-literature
| S-EPMC6517512 | biostudies-literature