Unknown

Dataset Information

0

Prevention of PKG1? oxidation augments cardioprotection in the stressed heart.


ABSTRACT: The cGMP-dependent protein kinase-1? (PKG1?) transduces NO and natriuretic peptide signaling; therefore, PKG1? activation can benefit the failing heart. Disease modifiers such as oxidative stress may depress the efficacy of PKG1? pathway activation and underlie variable clinical results. PKG1? can also be directly oxidized, forming a disulfide bond between homodimer subunits at cysteine 42 to enhance oxidant-stimulated vasorelaxation; however, the impact of PKG1? oxidation on myocardial regulation is unknown. Here, we demonstrated that PKG1? is oxidized in both patients with heart disease and in rodent disease models. Moreover, this oxidation contributed to adverse heart remodeling following sustained pressure overload or Gq agonist stimulation. Compared with control hearts and myocytes, those expressing a redox-dead protein (PKG1?(C42S)) better adapted to cardiac stresses at functional, histological, and molecular levels. Redox-dependent changes in PKG1? altered intracellular translocation, with the activated, oxidized form solely located in the cytosol, whereas reduced PKG1?(C42S) translocated to and remained at the outer plasma membrane. This altered PKG1? localization enhanced suppression of transient receptor potential channel 6 (TRPC6), thereby potentiating antihypertrophic signaling. Together, these results demonstrate that myocardial PKG1? oxidation prevents a beneficial response to pathological stress, may explain variable responses to PKG1? pathway stimulation in heart disease, and indicate that maintaining PKG1? in its reduced form may optimize its intrinsic cardioprotective properties.

SUBMITTER: Nakamura T 

PROVIDER: S-EPMC4497760 | biostudies-literature | 2015 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Prevention of PKG1α oxidation augments cardioprotection in the stressed heart.

Nakamura Taishi T   Ranek Mark J MJ   Lee Dong I DI   Shalkey Hahn Virginia V   Kim Choel C   Eaton Philip P   Kass David A DA  

The Journal of clinical investigation 20150504 6


The cGMP-dependent protein kinase-1α (PKG1α) transduces NO and natriuretic peptide signaling; therefore, PKG1α activation can benefit the failing heart. Disease modifiers such as oxidative stress may depress the efficacy of PKG1α pathway activation and underlie variable clinical results. PKG1α can also be directly oxidized, forming a disulfide bond between homodimer subunits at cysteine 42 to enhance oxidant-stimulated vasorelaxation; however, the impact of PKG1α oxidation on myocardial regulati  ...[more]

Similar Datasets

| S-EPMC4894346 | biostudies-literature
| S-EPMC4976938 | biostudies-literature
| S-EPMC8465671 | biostudies-literature
| S-EPMC4902298 | biostudies-literature
| S-EPMC7601978 | biostudies-literature
| S-EPMC6997485 | biostudies-literature
| S-EPMC6463290 | biostudies-literature
| S-EPMC3526952 | biostudies-literature
| S-EPMC4197633 | biostudies-literature
| S-EPMC3405268 | biostudies-literature