Unknown

Dataset Information

0

Artificial targeting of misfolded cytosolic proteins to endoplasmic reticulum as a mechanism for clearance.


ABSTRACT: We report that misfolded cytosolic proteins can be cleared from mammalian cells by directing them to endoplasmic reticulum (ER). NAT1 R64W and Parkin R42P are naturally occurring misfolded variants of cytosolic enzymes that acetylate arylamines and ubiquitinate proteins, respectively. We demonstrate that proteasome inhibition causes ER accumulation of NAT1 R64W and its ubiquitinated species, and that these products are cleared from cells following inhibition release. NAT1 WT by contrast is stable and not present at ER. The R42P mutation in Parkin locates to a UBL domain that interacts with C-terminal domains. Parkin R42P full length protein is trafficked poorly to ER and stable. Interestingly, fusion of the isolated R42P UBL to NAT1 WT results in a fusion product that is trafficked robustly to ER and degraded. Thus, the misfolded UBL is apparently masked by the intramolecular interactions. We also find that artificially directing Parkin R42P to ER by fusion with the Sec61? ER-directing transmembrane domain triggers its clearance. Altogether, our results suggest that routing misfolded cytosolic proteins to ER may be an effective strategy for clearance.

SUBMITTER: Liu F 

PROVIDER: S-EPMC4501007 | biostudies-literature | 2015 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Artificial targeting of misfolded cytosolic proteins to endoplasmic reticulum as a mechanism for clearance.

Liu Fen F   Koepp Deanna M DM   Walters Kylie J KJ  

Scientific reports 20150714


We report that misfolded cytosolic proteins can be cleared from mammalian cells by directing them to endoplasmic reticulum (ER). NAT1 R64W and Parkin R42P are naturally occurring misfolded variants of cytosolic enzymes that acetylate arylamines and ubiquitinate proteins, respectively. We demonstrate that proteasome inhibition causes ER accumulation of NAT1 R64W and its ubiquitinated species, and that these products are cleared from cells following inhibition release. NAT1 WT by contrast is stabl  ...[more]

Similar Datasets

| S-EPMC2580781 | biostudies-literature
| S-EPMC8503845 | biostudies-literature
| S-EPMC9554898 | biostudies-literature
| S-EPMC10229581 | biostudies-literature
| S-EPMC2713509 | biostudies-literature
2023-04-25 | PXD040899 | Pride
| S-EPMC3597850 | biostudies-literature
| S-EPMC2002554 | biostudies-literature
| S-EPMC1242303 | biostudies-literature
| S-EPMC7041945 | biostudies-literature