Unknown

Dataset Information

0

Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools.


ABSTRACT: DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA) sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1) an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies), incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2) an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031) and waist-hip ratio (p-value = 2.4×10-5), but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits.

SUBMITTER: Ding J 

PROVIDER: S-EPMC4501845 | biostudies-literature | 2015 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools.

Ding Jun J   Sidore Carlo C   Butler Thomas J TJ   Wing Mary Kate MK   Qian Yong Y   Meirelles Osorio O   Busonero Fabio F   Tsoi Lam C LC   Maschio Andrea A   Angius Andrea A   Kang Hyun Min HM   Nagaraja Ramaiah R   Cucca Francesco F   Abecasis Gonçalo R GR   Schlessinger David D  

PLoS genetics 20150714 7


DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA) sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1) an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteropla  ...[more]

Similar Datasets

| S-EPMC10722810 | biostudies-literature
| S-EPMC4775221 | biostudies-literature
| S-EPMC7059689 | biostudies-literature
| S-EPMC10723502 | biostudies-literature
2023-08-25 | GSE212051 | GEO
| S-EPMC9150079 | biostudies-literature
| S-EPMC5452530 | biostudies-literature
| S-EPMC7278034 | biostudies-literature
| S-EPMC9575012 | biostudies-literature