Unknown

Dataset Information

0

Tissue-specific autophagy responses to aging and stress in C. elegans.


ABSTRACT: Cellular function relies on a balance between protein synthesis and breakdown. Macromolecular breakdown through autophagy is broadly required for cellular and tissue development, function, and recovery from stress. While Caenorhabditis elegans is frequently used to explore cellular responses to development and stress, the most common assays for autophagy in this system lack tissue-level resolution. Different tissues within an organism have unique functional characteristics and likely vary in their reliance on autophagy under different conditions. To generate a tissue-specific map of autophagy in C. elegans we used a dual fluorescent protein (dFP) tag that releases monomeric fluorescent protein (mFP) upon arrival at the lysosome. Tissue-specific expression of dFP::LGG-1 revealed autophagic flux in all tissues, but mFP accumulation was most dramatic in the intestine. We also observed variable responses to stress: starvation increased autophagic mFP release in all tissues, whereas anoxia primarily increased intestinal autophagic flux. We observed autophagic flux with tagged LGG-1, LGG-2, and two autophagic cargo reporters: a soluble cytoplasmic protein, and mitochondrial TOMM-7. Finally, an increase in mFP in older worms was consistent with an age-dependent shift in proteostasis. These novel measures of autophagic flux in C. elegans reveal heterogeneity in autophagic response across tissues during stress and aging.

SUBMITTER: Chapin HC 

PROVIDER: S-EPMC4505168 | biostudies-literature | 2015 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tissue-specific autophagy responses to aging and stress in C. elegans.

Chapin Hannah C HC   Okada Megan M   Merz Alexey J AJ   Miller Dana L DL  

Aging 20150601 6


Cellular function relies on a balance between protein synthesis and breakdown. Macromolecular breakdown through autophagy is broadly required for cellular and tissue development, function, and recovery from stress. While Caenorhabditis elegans is frequently used to explore cellular responses to development and stress, the most common assays for autophagy in this system lack tissue-level resolution. Different tissues within an organism have unique functional characteristics and likely vary in the  ...[more]

Similar Datasets

| S-EPMC4352874 | biostudies-other
| S-EPMC7464313 | biostudies-literature
| S-EPMC7874617 | biostudies-literature
| S-EPMC10957088 | biostudies-literature
| S-EPMC10501630 | biostudies-literature
| S-EPMC5115904 | biostudies-literature
| S-EPMC5496740 | biostudies-literature
| S-EPMC5058509 | biostudies-literature
| S-EPMC5946081 | biostudies-other
| S-EPMC10947073 | biostudies-literature