Project description:The catalytic cross-coupling of arylboronic acids with pyridines through single-electron oxidation provides efficient access to substituted heterocycles. Despite the importance of this reaction, very little is known about its mechanism, and as a consequence, it is unclear whether the full scope of the transformation has been realized. Here we present kinetic and spectroscopic evidence showing a high degree of complexity in the reaction system. The mechanism derived from these studies shows the activation of Ag(I) for reduction of persulfate and an off-cycle protodeboronation by the pyridine substrate. These results provide key mechanistic insights that enable control of the off-cycle process, thus providing higher efficiency and yield.
Project description:Herein we present a Bi-catalyzed cross-coupling of arylboronic acids with perfluoroalkyl sulfonate salts based on a Bi(III)/Bi(V) redox cycle. An electron-deficient sulfone ligand proved to be key for the successful implementation of this protocol, which allows the unusual construction of C(sp2)-O bonds using commercially available NaOTf and KONf as coupling partners. Preliminary mechanistic studies as well as theoretical investigations reveal the intermediacy of a highly electrophilic Bi(V) species, which rapidly eliminates phenyl triflate.
Project description:10-Arylbenzo[h]quinolines were synthesized by cross-coupling of ethyl benzo[h]quinoline-10-carboxylate with arylboronic acids via group-directed Ni(0) catalyzation. The catalytic system combining Ni(COD)2 (10 mol %) with PCy3 (20 mol %) and t-BuOK (3 equiv) was optimal for the above transformations. A series of arylboronic acids reacted with ethyl benzo[h]quinoline-10-carboxylates for the production of various substituted 10-phenyl[h]quinolines in moderate and good yields under optimized reaction conditions.
Project description:Herein, we describe a simple and general multi-component synthesis of 5-arylselanyluracils by the regioselective C-H selenation of uracils. Reactions of uracils with arylboronic acid and Se powder in the presence of AgNO3 (10 mol%) at 120 °C under aerobic conditions afforded various 5-arylselanyluracils. The source of the introduced selanyl group was prepared from a commercially available arylboronic acid and Se powder in the reaction system, thereby ensuring a simple and efficient protocol. This reaction represents the first example of the synthesis of a 5-arylselanyluracil in a multi-component system.
Project description:2-Fluorobenzofurans underwent efficient nickel-catalyzed coupling with arylboronic acids through the activation of aromatic C-F bonds. This method allowed us to successfully synthesize a range of 2-arylbenzofurans with various substituents. The reaction, which proceeded under mild conditions, involved β-fluorine elimination from nickelacyclopropanes formed by the interaction of 2-fluorobenzofurans with zero-valent nickel species. This protocol facilitates orthogonal coupling reactions of aromatic C-F and C-Br bonds with arylboronic acids.
Project description:A series of general and selective Pd(II)-catalyzed Heck reactions were investigated under mild reaction conditions. The first protocol has been developed employing an imidazole-based secondary phosphine oxide (SPO) ligated palladium complex (6) as a precatalyst. The catalytic coupling of aryl halides and olefins led to the formation of the corresponding coupled products in excellent yields. A variety of substrates, both electron-rich and electron-poor olefins, were converted smoothly to the targeted products in high yields. Compared with the existing approaches employing SPO-Pd complexes in a Heck reaction, the current strategy features mild reaction conditions and broad substrate scope. Furthermore, we described the coupling of arylboronic acids with olefins, which were catalyzed by Pd(OAc)2 and employed N-bromosuccinimide as an additive under ambient conditions. The resulted biaryls have been obtained in moderate to good yields.
Project description:An efficient method was developed for the synthesis of unsymmetrical N-arylsulfamides using sulfamoyl azides and arylboronic acids in the presence of 10 mol% of copper chloride as the catalyst. The reaction was facilitated in MeOH in an open flask at room temperature. Unlike the coupling of sulfamides and boronic acids, the use of sulfamoyl azides was found to be beneficial with respect to the yield and reaction time.
Project description:Despite the widespread applications of 2-(hetero)aryl N-heteroarenes in numerous fields of science and technology, universal access to such compounds is hampered due to the lack of a general method for their synthesis. Herein, by a H2O-mediated H2-evolution cross-coupling strategy, we report an iridium(III)-catalyzed facile method to direct α-arylation of N-heteroarenes with both aryl and heteroaryl boronic acids, proceeding with broad substrate scope and excellent functional compatibility, oxidant and reductant-free conditions, operational simplicity, easy scalability, and no need for prefunctionalization of N-heteroarenes. This method is applicable for structural modification of biomedical molecules, and offers a practical route for direct access to 2-(hetero)aryl N-heteroarenes, a class of potential cyclometalated C^N ligands and N^N bidentate ligands that are difficult to prepare with the existing α-C-H arylation methods, thus filling an important gap in the capabilities of synthetic organic chemistry.
Project description:Room-temperature Ni(0)-catalyzed cross-coupling reactions of deactivated aryl chlorides with arylboronic acids with inexpensive triphenylphosphine (PPh3) as a supporting ligand have been accomplished in good to excellent yields. Air-stable Ni(PPh3)2Cl2 has also been established as catalyst precursor, and highly active nickel catalysts were obtained when the reduction of Ni(PPh3)2Cl2 with n-BuLi was carried out in the presence of an aryl chloride.