Unknown

Dataset Information

0

PrP charge structure encodes interdomain interactions.


ABSTRACT: Almost all proteins contain charged residues, and their chain distribution is tailored to fulfill essential ionic interactions for folding, binding and catalysis. Among proteins, the hinged two-domain chain of the cellular prion protein (PrP(C)) exhibits a peculiar charge structure with unclear consequences in its structural malleability. To decipher the charge design role, we generated charge-reverted mutants for each domain and analyzed their effect on conformational and metabolic features. We found that charges contain the information for interdomain interactions. Use of dynamic light scattering and thermal denaturation experiments delineates the compaction of the ?-fold by an electrostatic compensation between the polybasic 23-30 region and the ?3 electronegative surface. This interaction increases stability and disfavors fibrillation. Independently of this structural effect, the N-terminal electropositive clusters regulate the ?-cleavage efficiency. In the fibrillar state, use of circular dichroism, atomic-force and fluorescence microscopies reveal that the N-terminal positive clusters and the ?3 electronegative surface dictate the secondary structure, the assembly hierarchy and the growth length of the fibril state. These findings show that the PrP charge structure functions as a code set up to ensure function and reduce pathogenic routes.

SUBMITTER: Martinez J 

PROVIDER: S-EPMC4555102 | biostudies-literature | 2015 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

PrP charge structure encodes interdomain interactions.

Martínez Javier J   Sánchez Rosa R   Castellanos Milagros M   Makarava Natallia N   Aguzzi Adriano A   Baskakov Ilia V IV   Gasset María M  

Scientific reports 20150901


Almost all proteins contain charged residues, and their chain distribution is tailored to fulfill essential ionic interactions for folding, binding and catalysis. Among proteins, the hinged two-domain chain of the cellular prion protein (PrP(C)) exhibits a peculiar charge structure with unclear consequences in its structural malleability. To decipher the charge design role, we generated charge-reverted mutants for each domain and analyzed their effect on conformational and metabolic features. We  ...[more]

Similar Datasets

| S-EPMC3794440 | biostudies-literature
| S-EPMC4294479 | biostudies-literature
| S-EPMC3552259 | biostudies-literature
| S-EPMC2993331 | biostudies-literature
| S-EPMC3347580 | biostudies-literature
| S-EPMC3905773 | biostudies-literature
| S-EPMC1624900 | biostudies-literature
| S-EPMC6137104 | biostudies-literature
| S-EPMC2755658 | biostudies-literature
| S-EPMC8213589 | biostudies-literature