Unknown

Dataset Information

0

Interferon-induced mechanosensing defects impede apoptotic cell clearance in lupus.


ABSTRACT: Systemic lupus erythematosus (SLE) is a severe autoimmune disease that is associated with increased circulating apoptotic cell autoantigens (AC-Ags) as well as increased type I IFN signaling. Here, we describe a pathogenic mechanism in which follicular translocation of marginal zone (MZ) B cells in the spleens of BXD2 lupus mice disrupts marginal zone macrophages (MZMs), which normally clear AC debris and prevent follicular entry of AC-Ags. Phagocytosis of ACs by splenic MZMs required the megakaryoblastic leukemia 1 (MKL1) transcriptional coactivator-mediated mechanosensing pathway, which was maintained by MZ B cells through expression of membrane lymphotoxin-?1?2 (mLT). Specifically, type I IFN-induced follicular shuttling of mLT-expressing MZ B cells disengaged interactions between these MZ B cells and LT? receptor-expressing MZMs, thereby downregulating MKL1 in MZMs. Loss of MKL1 expression in MZMs led to defective F-actin polymerization, inability to clear ACs, and, eventually, MZM dissipation. Aggregation of plasmacytoid DCs in the splenic perifollicular region, follicular translocation of MZ B cells, and loss of MKL1 and MZMs were also observed in an additional murine lupus model and in the spleens of patients with SLE. Collectively, the results suggest that lupus might be interrupted by strategies that maintain or enhance mechanosensing signaling in the MZM barrier to prevent follicular entry of AC-Ags.

SUBMITTER: Li H 

PROVIDER: S-EPMC4563689 | biostudies-literature | 2015 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Interferon-induced mechanosensing defects impede apoptotic cell clearance in lupus.

Li Hao H   Fu Yang-Xin YX   Wu Qi Q   Zhou Yong Y   Crossman David K DK   Yang PingAr P   Li Jun J   Luo Bao B   Morel Laurence M LM   Kabarowski Janusz H JH   Yagita Hideo H   Ware Carl F CF   Hsu Hui-Chen HC   Mountz John D JD  

The Journal of clinical investigation 20150622 7


Systemic lupus erythematosus (SLE) is a severe autoimmune disease that is associated with increased circulating apoptotic cell autoantigens (AC-Ags) as well as increased type I IFN signaling. Here, we describe a pathogenic mechanism in which follicular translocation of marginal zone (MZ) B cells in the spleens of BXD2 lupus mice disrupts marginal zone macrophages (MZMs), which normally clear AC debris and prevent follicular entry of AC-Ags. Phagocytosis of ACs by splenic MZMs required the megaka  ...[more]

Similar Datasets

| S-EPMC4917652 | biostudies-literature
| S-EPMC4190068 | biostudies-literature
| S-EPMC5640883 | biostudies-literature
| S-EPMC4040260 | biostudies-literature
| S-EPMC2889349 | biostudies-literature
| S-EPMC3001012 | biostudies-literature
| S-EPMC3662023 | biostudies-literature
| S-EPMC8784392 | biostudies-literature
| S-EPMC8188360 | biostudies-literature
| S-EPMC8213124 | biostudies-literature