Membranes of MnO Beading in Carbon Nanofibers as Flexible Anodes for High-Performance Lithium-Ion Batteries.
Ontology highlight
ABSTRACT: Freestanding yet flexible membranes of MnO/carbon nanofibers are successfully fabricated through incorporating MnO2 nanowires into polymer solution by a facile electrospinning technique. During the stabilization and carbonization processes of the as-spun membranes, MnO2 nanowires are transformed to MnO nanoparticles coincided with a conversion of the polymer from an amorphous state to a graphitic structure of carbon nanofibers. The hybrids consist of isolated MnO nanoparticles beading in the porous carbon and demonstrate superior performance when being used as a binder-free anode for lithium-ion batteries. With an optimized amount of MnO (34.6 wt%), the anode exhibits a reversible capacity of as high as 987.3 mAh g(-1) after 150 discharge/charge cycles at 0.1 A g(-1), a good rate capability (406.1 mAh g(-1) at 3 A g(-1)) and an excellent cycling performance (655 mAh g(-1) over 280 cycles at 0.5 A g(-1)). Furthermore, the hybrid anode maintains a good electrochemical performance at bending state as a flexible electrode.
SUBMITTER: Zhao X
PROVIDER: S-EPMC4570985 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA