Project description:Long cycle performance is a crucial requirement in energy storage devices. New formulations and/or improvement of "conventional" materials have been investigated in order to achieve this target. Here we explore the performance of a novel type of carbon nanospheres (CNSs) with three heteroatom co-doped (nitrogen, phosphorous and sulfur) and high specific surface area as anode materials for lithium ion batteries. The CNSs were obtained from carbonization of highly-crosslinked organo (phosphazene) nanospheres (OPZs) of 300 nm diameter. The OPZs were synthesized via a single and facile step of polycondensation reaction between hexachlorocyclotriphosphazene (HCCP) and 4,4'-sulphonyldiphenol (BPS). The X-ray Photoelectron Spectroscopy (XPS) analysis showed a high heteroatom-doping content in the structure of CNSs while the textural evaluation from the N₂ sorption isotherms revealed the presence of micro- and mesopores and a high specific surface area of 875 m²/g. The CNSs anode showed remarkable stability and coulombic efficiency in a long charge-discharge cycling up to 1000 cycles at 1C rate, delivering about 130 mA·h·g-1. This study represents a step toward smart engineering of inexpensive materials with practical applications for energy devices.
Project description:In this work, lithium titanate nanoparticles (nLTO)/single wall carbon nanotubes (SWCNT) composite electrodes are prepared by the combination of an ultrasound irradiation and ultrasonic spray deposition methods. It was found that a mass fraction of 15% carbon nanotubes optimizes the electrochemical performance of nLTO electrodes. These present capacities as high as 173, 130, 110 and 70 mAh.g-1 at 0.1C, 1C, 10C and 100C, respectively. Moreover, after 1000 cycles at 1C, the nLTO/SWCNT composites present a capacity loss of just 9% and a Coulombic efficiency of 99.8%. Therefore, the presented methodology might be extended to other suitable active materials in order to manufacture binder free electrodes with optimal energy storage capabilities.
Project description:Hard carbon derived from fossil products is widely used as anode material for lithium-ion batteries. However, there are still several main shortcomings such as high cost, and poor rate performance, which restrict its wide application. Then tremendous efforts have been devoted to developing biomaterials in the battery applications. Recently, especially agricultural and industrial by-products have attracted much attention due to the electric double-layer capacitors. Herein, we report the sulfur-doped hard carbon (SHC) materials from the tannin-furanic resins (TF-Resin) of the derived agricultural by-products, followed by enveloping rGO on its surface through the hexadecyl trimethyl ammonium bromide. SHC provides sites for the storage of lithium, while the rGO layers can offer a highly conductive matrix to achieve good contact between particles and promote the diffusion and transport of ions and electrons. As a result, the SHC@rGO shows excellent lithium storage performance with initial discharge capacity around 746 mAh g-1 at a current density of 50 mA g-1, and shows superb stability keeping capacity retention of 91.9% after 200 cycles. Moreover, even at a high current density of 2,000 mAg-1, SHC@rGO still delivers a specific capacity of 188 mAg-1. These desired promising properties are active to the implement in the possible practical application.
Project description:Herein, SiO2 nanotubes have been fabricated via a facile two step hard-template growth method and evaluated as an anode for Li-ion batteries. SiO2 nanotubes exhibit a highly stable reversible capacity of 1266 mAhg(-1) after 100 cycles with negligible capacity fading. SiO2 NT anodes experience a capacity increase throughout the first 80 cycles through Si phase growth via SiO2 reduction. The hollow morphology of the SiO2 nanotubes accommodates the large volume expansion experienced by Si-based anodes during lithiation and promotes preservation of the solid electrolyte interphase layer. The thin walls of the SiO2 nanotubes allow for effective reduction in Li-ion diffusion path distance and, thus, afford a favorable rate cyclability. The high aspect ratio character of these nanotubes allow for a relatively scalable fabrication method of nanoscale SiO2-based anodes.
Project description:Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.
Project description:Herein, we employed Bi and Sb as the negative electrode in all solid-state lithium-ion batteries (LIBs) using LiBH4 as the solid-state electrolyte. The composite anode materials with acetylene black (AB) and LiBH4, prepared by high energy ball-milling, have shown extremely high stability with a high coulombic efficiency of 90-99% over a number of cycles. The gravimetric capacity decayed by only 18 and 5% as compared to the initial volumetric capacity of 4681.7 and 4393.4 mA h cm-3 for Bi and Sb anodes respectively.
Project description:Graphite anodes are well established for commercial use in lithium-ion battery systems. However, the limited capacity of graphite limits the further development of lithium-ion batteries. Hard carbon obtained from biomass is a highly promising anode material, with the advantage of enriched microcrystalline structure characteristics for better lithium storage. Tannin, a secondary product of metabolism during plant growth, has a rich source on earth. But the mechanism of hard carbon obtained from its derivation in lithium-ion batteries has been little studied. This paper successfully applied the hard carbon obtained from tannin as anode and illustrated the relationship between its structure and lithium storage performance. Meanwhile, to further enhance the performance, graphene oxide is skillfully compounded. The contact with the electrolyte and the charge transfer capability are effectively enhanced, then the capacity of PVP-HC is 255.5 mAh g-1 after 200 cycles at a current density of 400 mA g-1, with a capacity retention rate of 91.25%. The present work lays the foundation and opens up ideas for the application of biomass-derived hard carbon in lithium anodes.
Project description:A hindrance to the practical use of sodium-ion batteries is the lack of adequate anode materials. By utilizing the co-intercalation reaction, graphite, which is the most common anode material of lithium-ion batteries, was used for storing sodium ion. However, its performance, such as reversible capacity and coulombic efficiency, remains unsatisfactory for practical needs. Therefore, to overcome these drawbacks, a new carbon material was synthesized so that co-intercalation could occur efficiently. This carbon material has the same morphology as carbon black; that is, it has a wide pathway due to a turbostratic structure, and a short pathway due to small primary particles that allows the co-intercalation reaction to occur efficiently. Additionally, due to the numerous voids present in the inner amorphous structure, the sodium storage capacity was greatly increased. Furthermore, owing to the coarse co-intercalation reaction due to the surface pore structure, the formation of solid-electrolyte interphase was greatly suppressed and the first cycle coulombic efficiency reached 80%. This study shows that the carbon material alone can be used to design good electrode materials for sodium-ion batteries without the use of next-generation materials.
Project description:Lithium ion batteries (LIBs) are the enabling technology for many of the societal changes that are expected to happen in the following years. Among all the challenges for which LIBs are the key, vehicle electrification is one of the most crucial. Current battery materials cannot provide the required power densities for such applications and therefore, it makes necessary to develop new materials. Silicon is one of the proposed as next generation battery materials, but still there are challenges to overcome. Poor capacity retention is one of those drawbacks, and because it is tightly related with its high capacity, it is a problem rather difficult to address with common and scalable fabrication processes. Here we show that combining 0D and 1D silicon nanostructures, high capacity and stability can be achieved even using standard electrode fabrication processes. Capacities as high as 1200 mAh/g for more than 500 cycles at high current densities (2 A/g) were achieved with the produced hybrid 0D/1D electrodes. In this research, it was shown that while 0D nanostructures provide good strain relaxation capabilities, 1D nanomaterials contribute with enhanced cohesion and conductive matrix integrity.
Project description:Freestanding yet flexible membranes of MnO/carbon nanofibers are successfully fabricated through incorporating MnO2 nanowires into polymer solution by a facile electrospinning technique. During the stabilization and carbonization processes of the as-spun membranes, MnO2 nanowires are transformed to MnO nanoparticles coincided with a conversion of the polymer from an amorphous state to a graphitic structure of carbon nanofibers. The hybrids consist of isolated MnO nanoparticles beading in the porous carbon and demonstrate superior performance when being used as a binder-free anode for lithium-ion batteries. With an optimized amount of MnO (34.6 wt%), the anode exhibits a reversible capacity of as high as 987.3 mAh g(-1) after 150 discharge/charge cycles at 0.1 A g(-1), a good rate capability (406.1 mAh g(-1) at 3 A g(-1)) and an excellent cycling performance (655 mAh g(-1) over 280 cycles at 0.5 A g(-1)). Furthermore, the hybrid anode maintains a good electrochemical performance at bending state as a flexible electrode.