Unknown

Dataset Information

0

Expression and Function of mARC: Roles in Lipogenesis and Metabolic Activation of Ximelagatran.


ABSTRACT: Recently two novel enzymes were identified in the outer mitochondrial membrane, mARC1 and mARC2. These molybdenum containing enzymes can reduce a variety of N-hydroxylated compounds, such as N-hydroxy-guanidines and sulfohydroxamic acids, as well as convert nitrite into nitric oxide (NO). However, their endogenous functions remain unknown. Here we demonstrate a specific developmental pattern of expression of these enzymes. mARC1, but not mARC2, was found to be expressed in fetal human liver, whereas both, in particular mARC2, are abundant in adult liver and also expressed in omental and subcutaneous fat. Caloric diet restriction of obese patients caused a decreased expression of mARC2 in liver, similar to that seen in the livers of starved rats. Knock down of mARC2 expression by siRNA in murine adipocytes had statistically significant effect on the level of diglycerides and on the fatty acid composition of some triglycerides, concomitantly a clear trend toward the reduced formation of most of triglyceride and phospholipid species was observed. The involvement of mARC2 in the metabolism of the hepatotoxic drug ximelagatran was evaluated in hepatocytes and adipocytes. Ximelagatran was shown to cause oxidative stress and knock down of mARC2 in adipocytes prevented ximelagatran induced inhibition of mitochondrial respiration. In conclusion, our data indicate that mARC1 and mARC2 have different developmental expression profiles, and that mARC2 is involved in lipogenesis, is regulated by nutritional status and responsible for activation of ximelagatran into a mitotoxic metabolite(s).

SUBMITTER: Neve EP 

PROVIDER: S-EPMC4574727 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Expression and Function of mARC: Roles in Lipogenesis and Metabolic Activation of Ximelagatran.

Neve Etienne P A EP   Köfeler Harald H   Hendriks Delilah F G DF   Nordling Åsa Å   Gogvadze Vladimir V   Mkrtchian Souren S   Näslund Erik E   Ingelman-Sundberg Magnus M  

PloS one 20150917 9


Recently two novel enzymes were identified in the outer mitochondrial membrane, mARC1 and mARC2. These molybdenum containing enzymes can reduce a variety of N-hydroxylated compounds, such as N-hydroxy-guanidines and sulfohydroxamic acids, as well as convert nitrite into nitric oxide (NO). However, their endogenous functions remain unknown. Here we demonstrate a specific developmental pattern of expression of these enzymes. mARC1, but not mARC2, was found to be expressed in fetal human liver, whe  ...[more]

Similar Datasets

| S-EPMC2928515 | biostudies-other
| 2123891 | ecrin-mdr-crc
| S-EPMC6480896 | biostudies-literature
| S-EPMC5117217 | biostudies-literature
2020-06-30 | PXD020075 | Pride
2012-11-02 | E-GEOD-27391 | biostudies-arrayexpress
| S-EPMC3587167 | biostudies-literature
| S-EPMC3827783 | biostudies-literature
| S-EPMC4246976 | biostudies-literature
| S-EPMC8369789 | biostudies-literature