Efficient Chemoenzymatic Synthesis of an N-glycan Isomer Library.
Ontology highlight
ABSTRACT: Quantification, characterization and biofunctional studies of N-glycans on proteins remain challenging tasks due to complexity, diversity and low abundance of these glycans. The availability of structurally defined N-glycans (especially isomers) libraries is essential to help on solving these tasks. We reported herein an efficient chemoenzymatic strategy, namely Core Synthesis/Enzymatic Extension (CSEE), for rapid production of diverse N-glycans. Starting with 5 chemically prepared building blocks, 8 N-glycan core structures containing one or two terminal N-acetyl-D-glucosamine (GlcNAc) residue(s) were chemically synthesized via consistent use of oligosaccharyl thioethers as glycosylation donors in the convergent fragment coupling strategy. Each of these core structures was then extended to 5 to 15 N-glycan sequences by enzymatic reactions catalyzed by 4 robust glycosyltransferases. Success in synthesizing N-glycans with Neu5Gc and core-fucosylation further expanded the ability of enzymatic extension. High performance liquid chromatography with an amide column enabled rapid and efficient purification (>98% purity) of N-glycans in milligram scales. A total of 73 N-glycans (63 isomers) were successfully prepared and characterized by MS2 and NMR. The CSEE strategy provides a practical approach for "mass production" of structurally defined N-glycans, which are important standards and probes for Glycoscience.
SUBMITTER: Li L
PROVIDER: S-EPMC4583208 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA