Unknown

Dataset Information

0

CDK4 Amplification Reduces Sensitivity to CDK4/6 Inhibition in Fusion-Positive Rhabdomyosarcoma.


ABSTRACT: PURPOSE:Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and includes a PAX3- or PAX7-FOXO1 fusion-positive subtype. Amplification of chromosomal region 12q13-q14, which contains the CDK4 proto-oncogene, was identified in an aggressive subset of fusion-positive RMS. CDK4/6 inhibitors have antiproliferative activity in CDK4-amplified liposarcoma and neuroblastoma, suggesting CDK4/6 inhibition as a potential therapeutic strategy in fusion-positive RMS. EXPERIMENTAL DESIGN:We examined the biologic consequences of CDK4 knockdown, CDK4 overexpression, and pharmacologic CDK4/6 inhibition by LEE011 in fusion-positive RMS cell lines and xenografts. RESULTS:Knockdown of CDK4 abrogated proliferation and transformation of 12q13-14-amplified and nonamplified fusion-positive RMS cells via G1-phase cell-cycle arrest. This arrest was mediated by reduced RB phosphorylation and E2F-responsive gene expression. Significant differences in E2F target expression, cell-cycle distribution, proliferation, or transformation were not observed in RMS cells overexpressing CDK4. Treatment with LEE011 phenocopied CDK4 knockdown, decreasing viability, RB phosphorylation, and E2F-responsive gene expression and inducing G1-phase cell-cycle arrest. Although all fusion-positive cell lines showed sensitivity to CDK4/6 inhibition, there was diminished sensitivity associated with CDK4 amplification and overexpression. This variable responsiveness to LEE011 was recapitulated in xenograft models of CDK4-amplified and nonamplified fusion-positive RMS. CONCLUSIONS:Our data demonstrate that CDK4 is necessary but overexpression is not sufficient for RB-E2F-mediated G1-phase cell-cycle progression, proliferation, and transformation in fusion-positive RMS. Our studies indicate that LEE011 is active in the setting of fusion-positive RMS and suggest that low CDK4-expressing fusion-positive tumors may be particularly susceptible to CDK4/6 inhibition.

SUBMITTER: Olanich ME 

PROVIDER: S-EPMC4583342 | biostudies-literature | 2015 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

CDK4 Amplification Reduces Sensitivity to CDK4/6 Inhibition in Fusion-Positive Rhabdomyosarcoma.

Olanich Mary E ME   Sun Wenyue W   Hewitt Stephen M SM   Abdullaev Zied Z   Pack Svetlana D SD   Barr Frederic G FG  

Clinical cancer research : an official journal of the American Association for Cancer Research 20150325 21


<h4>Purpose</h4>Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and includes a PAX3- or PAX7-FOXO1 fusion-positive subtype. Amplification of chromosomal region 12q13-q14, which contains the CDK4 proto-oncogene, was identified in an aggressive subset of fusion-positive RMS. CDK4/6 inhibitors have antiproliferative activity in CDK4-amplified liposarcoma and neuroblastoma, suggesting CDK4/6 inhibition as a potential therapeutic strategy in fusion-positive RMS.<h4>Experimenta  ...[more]

Similar Datasets

| S-EPMC3887377 | biostudies-literature
| S-EPMC6345526 | biostudies-literature
| S-EPMC11303816 | biostudies-literature
2016-06-01 | E-GEOD-66533 | biostudies-arrayexpress
2020-08-11 | PXD015231 | Pride
| S-EPMC8469567 | biostudies-literature
2016-06-01 | GSE66533 | GEO
| S-EPMC10994244 | biostudies-literature
| S-EPMC8626462 | biostudies-literature
2024-05-31 | GSE240308 | GEO