Unknown

Dataset Information

0

Film growth, adsorption and desorption kinetics of indigo on SiO2.


ABSTRACT: Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.

SUBMITTER: Scherwitzl B 

PROVIDER: S-EPMC4589157 | biostudies-literature | 2014 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Film growth, adsorption and desorption kinetics of indigo on SiO2.

Scherwitzl Boris B   Resel Roland R   Winkler Adolf A  

The Journal of chemical physics 20140501 18


Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS  ...[more]

Similar Datasets

| S-EPMC8454550 | biostudies-literature
| S-EPMC3970131 | biostudies-literature
| S-EPMC9318069 | biostudies-literature
| S-EPMC7841946 | biostudies-literature
| S-EPMC4031480 | biostudies-literature
| S-EPMC3548063 | biostudies-literature
| S-EPMC2847898 | biostudies-other