Multiscale Model of Colorectal Cancer Using the Cellular Potts Framework.
Ontology highlight
ABSTRACT: Colorectal cancer (CRC) is one of the major causes of death in the developed world and forms a canonical example of tumorigenesis. CRC arises from a string of mutations of individual cells in the colorectal crypt, making it particularly suited for multiscale multicellular modeling, where mutations of individual cells can be clearly represented and their effects readily tracked. In this paper, we present a multicellular model of the onset of colorectal cancer, utilizing the cellular Potts model (CPM). We use the model to investigate how, through the modification of their mechanical properties, mutant cells colonize the crypt. Moreover, we study the influence of mutations on the shape of cells in the crypt, suggesting possible cell- and tissue-level indicators for identifying early-stage cancerous crypts. Crucially, we discuss the effect that the motility parameters of the model (key factors in the behavior of the CPM) have on the distribution of cells within a homeostatic crypt, resulting in an optimal parameter regime that accurately reflects biological assumptions. In summary, the key results of this paper are 1) how to couple the CPM with processes occurring on other spatial scales, using the example of the crypt to motivate suitable motility parameters; 2) modeling mutant cells with the CPM; 3) and investigating how mutations influence the shape of cells in the crypt.
SUBMITTER: Osborne JM
PROVIDER: S-EPMC4598229 | biostudies-literature | 2015
REPOSITORIES: biostudies-literature
ACCESS DATA