Isoprenoid Biosynthesis in Pathogenic Bacteria: Nuclear Resonance Vibrational Spectroscopy Provides Insight into the Unusual [4Fe-4S] Cluster of the E.?coli LytB/IspH Protein.
Ontology highlight
ABSTRACT: The LytB/IspH protein catalyzes the last step of the methylerythritol phosphate (MEP) pathway which is used for the biosynthesis of essential terpenoids in most pathogenic bacteria. Therefore, the MEP pathway is a target for the development of new antimicrobial agents as it is essential for microorganisms, yet absent in humans. Substrate-free LytB has a special [4Fe-4S](2+) cluster with a yet unsolved structure. This motivated us to use synchrotron-based nuclear resonance vibrational spectroscopy (NRVS) in combination with quantum chemical-molecular mechanical (QM/MM) calculations to gain more insight into the structure of substrate-free LytB. The apical iron atom of the [4Fe-4S](2+) is clearly linked to three water molecules. We additionally present NRVS data of LytB bound to its natural substrate, (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HMBPP) and to the inhibitors (E)-4-amino-3-methylbut-2-en-1-yl diphosphate and (E)-4-mercapto-3-methylbut-2-en-1-yl diphosphate.
SUBMITTER: Faus I
PROVIDER: S-EPMC4609541 | biostudies-literature | 2015 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA