Unknown

Dataset Information

0

Phosphorylation of FE65 Ser610 by serum- and glucocorticoid-induced kinase 1 modulates Alzheimer's disease amyloid precursor protein processing.


ABSTRACT: Alzheimer's disease (AD) is a fatal neurodegenerative disease affecting 36 million people worldwide. Genetic and biochemical research indicate that the excessive generation of amyloid-? peptide (A?) from amyloid precursor protein (APP), is a major part of AD pathogenesis. FE65 is a brain-enriched adaptor protein that binds to APP. However, the role of FE65 in APP processing and the mechanisms that regulate binding of FE65 to APP are not fully understood. In the present study, we show that serum- and glucocorticoid-induced kinase 1 (SGK1) phosphorylates FE65 on Ser(610) and that this phosphorylation attenuates FE65 binding to APP. We also show that FE65 promotes amyloidogenic processing of APP and that FE65 Ser(610) phosphorylation inhibits this effect. Furthermore, we found that the effect of FE65 Ser(610) phosphorylation on APP processing is linked to a role of FE65 in metabolic turnover of APP via the proteasome. Thus FE65 influences APP degradation via the proteasome and phosphorylation of FE65 Ser(610) by SGK1 regulates binding of FE65 to APP, APP turnover and processing.

SUBMITTER: Chow WN 

PROVIDER: S-EPMC4613528 | biostudies-literature | 2015 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Phosphorylation of FE65 Ser610 by serum- and glucocorticoid-induced kinase 1 modulates Alzheimer's disease amyloid precursor protein processing.

Chow Wan Ning Vanessa WN   Ngo Jacky Chi Ki JC   Li Wen W   Chen Yu Wai YW   Tam Ka Ming Vincent KM   Chan Ho Yin Edwin HY   Miller Christopher C J CC   Lau Kwok-Fai KF  

The Biochemical journal 20150717 3


Alzheimer's disease (AD) is a fatal neurodegenerative disease affecting 36 million people worldwide. Genetic and biochemical research indicate that the excessive generation of amyloid-β peptide (Aβ) from amyloid precursor protein (APP), is a major part of AD pathogenesis. FE65 is a brain-enriched adaptor protein that binds to APP. However, the role of FE65 in APP processing and the mechanisms that regulate binding of FE65 to APP are not fully understood. In the present study, we show that serum-  ...[more]

Similar Datasets

| S-EPMC5622059 | biostudies-literature
| S-EPMC3188680 | biostudies-literature
| S-EPMC5414040 | biostudies-literature
| S-EPMC7463977 | biostudies-literature
| S-EPMC6086563 | biostudies-literature
| S-EPMC7206886 | biostudies-literature
| S-EPMC3064266 | biostudies-literature
| S-EPMC1383510 | biostudies-literature
| S-EPMC3086759 | biostudies-literature
| S-EPMC2581855 | biostudies-literature