Unknown

Dataset Information

0

Mapping the Processivity Determinants of the Kinesin-3 Motor Domain.


ABSTRACT: Kinesin superfamily members play important roles in many diverse cellular processes, including cell motility, cell division, intracellular transport, and regulation of the microtubule cytoskeleton. How the properties of the family-defining motor domain of distinct kinesins are tailored to their different cellular roles remains largely unknown. Here, we employed molecular-dynamics simulations coupled with energetic calculations to infer the family-specific interactions of kinesin-1 and kinesin-3 motor domains with microtubules in different nucleotide states. We then used experimental mutagenesis and single-molecule motility assays to further assess the predicted residue-wise determinants of distinct kinesin-microtubule binding properties. Collectively, our results identify residues in the L8, L11, and ?6 regions that contribute to family-specific microtubule interactions and whose mutation affects motor-microtubule complex stability and processive motility (the ability of an individual motor to take multiple steps along its microtubule filament). In particular, substitutions of prominent kinesin-3 residues with those found in kinesin-1, namely, R167S/H171D, K266D, and R346M, were found to decrease kinesin-3 processivity 10-fold and thus approach kinesin-1 levels.

SUBMITTER: Scarabelli G 

PROVIDER: S-EPMC4624112 | biostudies-literature | 2015 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mapping the Processivity Determinants of the Kinesin-3 Motor Domain.

Scarabelli Guido G   Soppina Virupakshi V   Yao Xin-Qiu XQ   Atherton Joseph J   Moores Carolyn A CA   Verhey Kristen J KJ   Grant Barry J BJ  

Biophysical journal 20151001 8


Kinesin superfamily members play important roles in many diverse cellular processes, including cell motility, cell division, intracellular transport, and regulation of the microtubule cytoskeleton. How the properties of the family-defining motor domain of distinct kinesins are tailored to their different cellular roles remains largely unknown. Here, we employed molecular-dynamics simulations coupled with energetic calculations to infer the family-specific interactions of kinesin-1 and kinesin-3  ...[more]

Similar Datasets

| S-EPMC3820893 | biostudies-literature
| S-EPMC3820509 | biostudies-literature
| S-EPMC5448234 | biostudies-literature
| S-EPMC6070657 | biostudies-literature
| S-EPMC4191751 | biostudies-literature
| S-EPMC3562449 | biostudies-literature
| S-EPMC3213134 | biostudies-literature
| S-EPMC2733746 | biostudies-literature
| S-EPMC2394829 | biostudies-literature
| S-EPMC5036643 | biostudies-literature