Acute Loss of miR-221 and miR-222 in the Atherosclerotic Plaque Shoulder Accompanies Plaque Rupture.
Ontology highlight
ABSTRACT: Atherosclerotic plaque vulnerability is accompanied by changes in the molecular and cellular function in the plaque shoulder, including a decrease in vascular smooth muscle cell proliferation. We aimed to determine whether the expression of 3 miRNAs that regulate vascular smooth muscle cell proliferation (miR-145, miR-221, and miR-222) is altered with plaque rupture, suggesting a role in regulating plaque stability.miRNAs were measured in the plaque shoulder of carotid plaques obtained from patients undergoing carotid endarterectomy (CEA) for 3 distinct clinical scenarios: (1) patients without previous neurological events but high-grade carotid stenosis (asymptomatic), (2) patients with an acute neurological event within 5 days of the CEA (urgent), and (3) patients undergoing CEA>5 days after a neurological event (symptomatic).Mean time from plaque rupture event to CEA was 2.4 days in the urgent group. The urgent group exhibited a significant decrease in miR-221 and miR-222 expression in the plaque shoulder, whereas no significant differences were seen in miR-145 across the 3 groups. Regression analysis demonstrated a significant correlation between time from the neurological event to CEA and increasing miR-221 and miR-222, but not miR-145. mRNA encoding p27Kip1, a target of miR-221 and miR-222 that inhibits vascular smooth muscle cell proliferation, was increased in the urgent group.Atherosclerotic plaque rupture is accompanied by a loss of miR-221 and miR-222 and an increase in p27Kip1 mRNA expression in the plaque shoulder, suggesting an association between these miRNAs and atherosclerotic plaque stability.
SUBMITTER: Bazan HA
PROVIDER: S-EPMC4624519 | biostudies-literature | 2015 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA